Suppr超能文献

探索纳米增强型光电神经调节的现在和未来方向。

Exploring Present and Future Directions in Nano-Enhanced Optoelectronic Neuromodulation.

机构信息

The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.

出版信息

Acc Chem Res. 2024 May 7;57(9):1398-1410. doi: 10.1021/acs.accounts.4c00086. Epub 2024 Apr 23.

Abstract

Electrical neuromodulation has achieved significant translational advancements, including the development of deep brain stimulators for managing neural disorders and vagus nerve stimulators for seizure treatment. Optoelectronics, in contrast to wired electrical systems, offers the leadless feature that guides multisite and high spatiotemporal neural system targeting, ensuring high specificity and precision in translational therapies known as "photoelectroceuticals". This Account provides a concise overview of developments in novel optoelectronic nanomaterials that are engineered through innovative molecular, chemical, and nanostructure designs to facilitate neural interfacing with high efficiency and minimally invasive implantation.This Account outlines the progress made both within our laboratory and across the broader scientific community, with particular attention to implications in materials innovation strategies, studying bioelectrical activation with spatiotemporal methods, and applications in regenerative medicine. In materials innovation, we highlight a nongenetic, biocompatible, and minimally invasive approach for neuromodulation that spans various length scales, from single neurons to nerve tissues using nanosized particles and monolithic membranes. Furthermore, our discussion exposes the critical unresolved questions in the field, including mechanisms of interaction at the nanobio interface, the precision of cellular or tissue targeting, and integration into existing neural networks with high spatiotemporal modulation. In addition, we present the challenges and pressing needs for long-term stability and biocompatibility, scalability for clinical applications, and the development of noninvasive monitoring and control systems.In addressing the existing challenges in the field of nanobio interfaces, particularly for neural applications, we envisage promising strategic directions that could significantly advance this burgeoning domain. This involves a deeper theoretical understanding of nanobiointerfaces, where simulations and experimental validations on how nanomaterials interact spatiotemporally with biological systems are crucial. The development of more durable materials is vital for prolonged applications in dynamic neural interfaces, and the ability to manipulate neural activity with high specificity and spatial resolution, paves the way for targeting individual neurons or specific neural circuits. Additionally, integrating these interfaces with advanced control systems, possibly leveraging artificial intelligence and machine learning algorithms and programming dynamically responsive materials designs, could significantly ease the implementation of stimulation and recording. These innovations hold the potential to introduce novel treatment modalities for a wide range of neurological and systemic disorders.

摘要

电神经调节已经取得了重大的转化进展,包括开发深部脑刺激器来治疗神经紊乱和迷走神经刺激器来治疗癫痫。与有线电子系统相比,光电技术具有无引线的特点,可以引导多部位和高时空神经系统靶向,确保在被称为“光电器”的转化治疗中具有高度的特异性和精度。本报告简要概述了通过创新的分子、化学和纳米结构设计来工程新型光电纳米材料的进展,这些材料有助于高效、微创地进行神经接口,实现植入。本报告概述了我们实验室和更广泛的科学界取得的进展,特别关注材料创新策略、使用时空方法研究生物电激活以及在再生医学中的应用等方面的意义。在材料创新方面,我们强调了一种非遗传、生物相容和微创的神经调节方法,该方法跨越了从单个神经元到神经组织的各种长度尺度,使用纳米级颗粒和整体膜。此外,我们的讨论还揭示了该领域中未解决的关键问题,包括纳米生物界面相互作用的机制、细胞或组织靶向的精度以及与高时空调制的现有神经网络的整合。此外,我们还介绍了长期稳定性和生物相容性、临床应用的可扩展性以及非侵入性监测和控制系统的开发等方面的挑战和紧迫需求。在解决纳米生物界面领域的现有挑战,特别是神经应用方面,我们设想了一些有前途的战略方向,这些方向可能会极大地推动这一新兴领域的发展。这涉及到对纳米生物界面的更深入的理论理解,其中模拟和实验验证纳米材料如何与生物系统时空相互作用至关重要。开发更耐用的材料对于动态神经接口的长期应用至关重要,而能够以高特异性和空间分辨率操纵神经活动,则为靶向单个神经元或特定神经回路铺平了道路。此外,将这些接口与先进的控制系统集成,可能利用人工智能和机器学习算法以及动态响应材料设计的编程,将大大简化刺激和记录的实现。这些创新有可能为广泛的神经和系统疾病引入新的治疗模式。

相似文献

1
Exploring Present and Future Directions in Nano-Enhanced Optoelectronic Neuromodulation.
Acc Chem Res. 2024 May 7;57(9):1398-1410. doi: 10.1021/acs.accounts.4c00086. Epub 2024 Apr 23.
2
Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering.
Acc Chem Res. 2024 Jun 4;57(11):1633-1647. doi: 10.1021/acs.accounts.4c00163. Epub 2024 May 16.
3
Multifunctional Nanomaterials for Advancing Neural Interfaces: Recording, Stimulation, and Beyond.
Acc Chem Res. 2024 Jul 2;57(13):1803-1814. doi: 10.1021/acs.accounts.4c00138. Epub 2024 Jun 10.
4
Monolithically Defined Wireless Fully Implantable Nervous System Interfaces.
Acc Chem Res. 2024 May 7;57(9):1275-1286. doi: 10.1021/acs.accounts.4c00013. Epub 2024 Apr 12.
5
Nanotechnology Enables Novel Modalities for Neuromodulation.
Adv Mater. 2021 Dec;33(52):e2103208. doi: 10.1002/adma.202103208. Epub 2021 Oct 19.
6
Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
Acc Chem Res. 2018 Feb 20;51(2):309-318. doi: 10.1021/acs.accounts.7b00547. Epub 2018 Jan 30.
7
Neural functional rehabilitation: exploring neuromuscular reconstruction technology advancements and challenges.
Neural Regen Res. 2024 Dec 7;21(1):173-86. doi: 10.4103/NRR.NRR-D-24-00613.
8
Photoacoustic: A Versatile Nongenetic Method for High-Precision Neuromodulation.
Acc Chem Res. 2024 Jun 4;57(11):1595-1607. doi: 10.1021/acs.accounts.4c00119. Epub 2024 May 17.
9
Force-Based Neuromodulation.
Acc Chem Res. 2024 May 7;57(9):1384-1397. doi: 10.1021/acs.accounts.4c00074. Epub 2024 Apr 24.
10
Progress in Brain-Compatible Interfaces with Soft Nanomaterials.
Adv Mater. 2020 Sep;32(35):e1907522. doi: 10.1002/adma.201907522. Epub 2020 Apr 16.

引用本文的文献

2
Biomaterials for neuroengineering: applications and challenges.
Regen Biomater. 2025 Feb 21;12:rbae137. doi: 10.1093/rb/rbae137. eCollection 2025.
3
Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare.
Cyborg Bionic Syst. 2024 Oct 18;5:0172. doi: 10.34133/cbsystems.0172. eCollection 2024.

本文引用的文献

1
Monolithic silicon for high spatiotemporal translational photostimulation.
Nature. 2024 Feb;626(8001):990-998. doi: 10.1038/s41586-024-07016-9. Epub 2024 Feb 21.
2
Augmenting insect olfaction performance through nano-neuromodulation.
Nat Nanotechnol. 2024 May;19(5):677-687. doi: 10.1038/s41565-023-01592-z. Epub 2024 Jan 25.
3
Imaging cellular forces with photonic crystals.
Nat Commun. 2023 Nov 14;14(1):7369. doi: 10.1038/s41467-023-43090-9.
5
Periplasmic biomineralization for semi-artificial photosynthesis.
Sci Adv. 2023 Jul 21;9(29):eadg5858. doi: 10.1126/sciadv.adg5858.
7
The protein corona from nanomedicine to environmental science.
Nat Rev Mater. 2023 Mar 24:1-17. doi: 10.1038/s41578-023-00552-2.
8
Perspectives on tissue-like bioelectronics for neural modulation.
iScience. 2023 Apr 24;26(5):106715. doi: 10.1016/j.isci.2023.106715. eCollection 2023 May 19.
9
A Highly Robust Amphibious Soft Robot with Imperceptibility Based on a Water-Stable and Self-Healing Ionic Conductor.
Adv Mater. 2023 Jul;35(28):e2301005. doi: 10.1002/adma.202301005. Epub 2023 May 28.
10
A 3D biomimetic optoelectronic scaffold repairs cranial defects.
Sci Adv. 2023 Feb 15;9(7):eabq7750. doi: 10.1126/sciadv.abq7750.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验