Suppr超能文献

三维 CT 扫描皮下脂肪和肌肉质量对免疫治疗癌症的协同预后价值。

Synergic prognostic value of 3D CT scan subcutaneous fat and muscle masses for immunotherapy-treated cancer.

机构信息

Department of Nuclear Medicine, Henri Becquerel Cancer Center, 76000 Rouen, France

QuantIF-LITIS (EA[Equipe d'Accueil] 4108), Faculty of Medicine, University of Rouen, 76000 Rouen, France.

出版信息

J Immunother Cancer. 2023 Sep;11(9). doi: 10.1136/jitc-2023-007315.

Abstract

BACKGROUND

Our aim was to explore the prognostic value of anthropometric parameters in a large population of patients treated with immunotherapy.

METHODS

We retrospectively included 623 patients with advanced non-small cell lung cancer (NSCLC) (n=318) or melanoma (n=305) treated by an immune-checkpoint-inhibitor having a pretreatment (thorax-)abdomen-pelvis CT scan. An external validation cohort of 55 patients with NSCLC was used. Anthropometric parameters were measured three-dimensionally (3D) by a deep learning software (Anthropometer3DNet) allowing an automatic multislice measurement of lean body mass, fat body mass (FBM), muscle body mass (MBM), visceral fat mass (VFM) and sub-cutaneous fat mass (SFM). Body mass index (BMI) and weight loss (WL) were also retrieved. Receiver operator characteristic (ROC) curve analysis was performed and overall survival was calculated using Kaplan-Meier (KM) curve and Cox regression analysis.

RESULTS

In the overall cohort, 1-year mortality rate was 0.496 (95% CI: 0.457 to 0.537) for 309 events and 5-year mortality rate was 0.196 (95% CI: 0.165 to 0.233) for 477 events. In the univariate Kaplan-Meier analysis, prognosis was worse (p<0.001) for patients with low SFM (<3.95 kg/m), low FBM (<3.26 kg/m), low VFM (<0.91 kg/m), low MBM (<5.85 kg/m) and low BMI (<24.97 kg/m). The same parameters were significant in the Cox univariate analysis (p<0.001) and, in the multivariate stepwise Cox analysis, the significant parameters were MBM (p<0.0001), SFM (0.013) and WL (0.0003). In subanalyses according to the type of cancer, all body composition parameters were statistically significant for NSCLC in ROC, KM and Cox univariate analysis while, for melanoma, none of them, except MBM, was statistically significant. In multivariate Cox analysis, the significant parameters for NSCLC were MBM (HR=0.81, p=0.0002), SFM (HR=0.94, p=0.02) and WL (HR=1.06, p=0.004). For NSCLC, a KM analysis combining SFM and MBM was able to separate the population in three categories with the worse prognostic for the patients with both low SFM (<5.22 kg/m) and MBM (<6.86 kg/m) (p<0001). On the external validation cohort, combination of low SFM and low MBM was pejorative with 63% of mortality at 1 year versus 25% (p=0.0029).

CONCLUSIONS

3D measured low SFM and MBM are significant prognosis factors of NSCLC treated by immune checkpoint inhibitors and can be combined to improve the prognostic value.

摘要

背景

我们旨在探索在接受免疫治疗的大量患者中,人体测量参数的预后价值。

方法

我们回顾性纳入了 623 名接受免疫检查点抑制剂治疗的晚期非小细胞肺癌(NSCLC)(n=318)或黑色素瘤(n=305)患者,这些患者在治疗前均进行了(胸部-)腹部-骨盆 CT 扫描。我们还使用了 55 名 NSCLC 患者的外部验证队列。通过深度学习软件(Anthropometer3DNet)对人体测量参数进行三维(3D)测量,该软件允许对瘦体重、脂肪体重(FBM)、肌肉体重(MBM)、内脏脂肪量(VFM)和皮下脂肪量(SFM)进行自动多层测量。还检索了体重指数(BMI)和体重减轻(WL)。进行了受试者工作特征(ROC)曲线分析,并使用 Kaplan-Meier(KM)曲线和 Cox 回归分析计算总生存期。

结果

在总队列中,1 年死亡率为 0.496(95%CI:0.457 至 0.537),有 309 例事件;5 年死亡率为 0.196(95%CI:0.165 至 0.233),有 477 例事件。在单因素 Kaplan-Meier 分析中,预后较差(p<0.001)的患者的 SFM(<3.95 kg/m)、FBM(<3.26 kg/m)、VFM(<0.91 kg/m)、MBM(<5.85 kg/m)和 BMI(<24.97 kg/m)较低。在单因素 Cox 分析中,同样的参数具有统计学意义(p<0.001),在多因素逐步 Cox 分析中,有意义的参数是 MBM(p<0.0001)、SFM(0.013)和 WL(0.0003)。根据癌症类型进行亚组分析,在 ROC、KM 和 Cox 单因素分析中,所有人体成分参数对 NSCLC 均具有统计学意义,而对于黑色素瘤,除了 MBM 外,均无统计学意义。在多因素 Cox 分析中,对 NSCLC 有意义的参数是 MBM(HR=0.81,p=0.0002)、SFM(HR=0.94,p=0.02)和 WL(HR=1.06,p=0.004)。对于 NSCLC,KM 分析结合 SFM 和 MBM 能够将人群分为三类,具有较低 SFM(<5.22 kg/m)和 MBM(<6.86 kg/m)的患者预后更差(p<0001)。在外部验证队列中,低 SFM 和低 MBM 的组合具有不良预后,1 年死亡率为 63%,而 25%(p=0.0029)。

结论

3D 测量的低 SFM 和 MBM 是接受免疫检查点抑制剂治疗的 NSCLC 的重要预后因素,可以结合起来提高预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65fe/10496660/fdfc36aaeedd/jitc-2023-007315f02.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验