Suppr超能文献

用于糖尿病视网膜病变自动诊断的高分辨率和超广角光学相干断层扫描血管造影采集的混合融合

Hybrid Fusion of High-Resolution and Ultra-Widefield OCTA Acquisitions for the Automatic Diagnosis of Diabetic Retinopathy.

作者信息

Li Yihao, El Habib Daho Mostafa, Conze Pierre-Henri, Zeghlache Rachid, Le Boité Hugo, Bonnin Sophie, Cosette Deborah, Magazzeni Stephanie, Lay Bruno, Le Guilcher Alexandre, Tadayoni Ramin, Cochener Béatrice, Lamard Mathieu, Quellec Gwenolé

机构信息

Inserm, UMR 1101 LaTIM, F-29200 Brest, France.

Univ Bretagne Occidentale, F-29200 Brest, France.

出版信息

Diagnostics (Basel). 2023 Aug 26;13(17):2770. doi: 10.3390/diagnostics13172770.

Abstract

Optical coherence tomography angiography (OCTA) can deliver enhanced diagnosis for diabetic retinopathy (DR). This study evaluated a deep learning (DL) algorithm for automatic DR severity assessment using high-resolution and ultra-widefield (UWF) OCTA. Diabetic patients were examined with 6×6 mm2 high-resolution OCTA and 15×15 mm2 UWF-OCTA using PLEX®Elite 9000. A novel DL algorithm was trained for automatic DR severity inference using both OCTA acquisitions. The algorithm employed a unique hybrid fusion framework, integrating structural and flow information from both acquisitions. It was trained on data from 875 eyes of 444 patients. Tested on 53 patients (97 eyes), the algorithm achieved a good area under the receiver operating characteristic curve (AUC) for detecting DR (0.8868), moderate non-proliferative DR (0.8276), severe non-proliferative DR (0.8376), and proliferative/treated DR (0.9070). These results significantly outperformed detection with the 6×6 mm2 (AUC = 0.8462, 0.7793, 0.7889, and 0.8104, respectively) or 15×15 mm2 (AUC = 0.8251, 0.7745, 0.7967, and 0.8786, respectively) acquisitions alone. Thus, combining high-resolution and UWF-OCTA acquisitions holds the potential for improved early and late-stage DR detection, offering a foundation for enhancing DR management and a clear path for future works involving expanded datasets and integrating additional imaging modalities.

摘要

光学相干断层扫描血管造影(OCTA)可为糖尿病性视网膜病变(DR)提供更准确的诊断。本研究评估了一种深度学习(DL)算法,用于使用高分辨率和超广角(UWF)OCTA自动评估DR的严重程度。糖尿病患者使用PLEX®Elite 9000进行6×6 mm2高分辨率OCTA和15×15 mm2 UWF-OCTA检查。使用两种OCTA采集数据训练了一种新的DL算法,用于自动推断DR的严重程度。该算法采用了独特的混合融合框架,整合了两种采集中的结构和血流信息。它在444例患者的875只眼中的数据上进行训练。在53例患者(97只眼)上进行测试,该算法在检测DR(0.8868)、中度非增殖性DR(0.8276)、重度非增殖性DR(0.8376)和增殖性/治疗后DR(0.9070)时,受试者工作特征曲线下面积(AUC)良好。这些结果显著优于单独使用6×6 mm2(AUC分别为0.8462、0.7793、0.7889和0.8104)或15×15 mm2(AUC分别为0.8251、0.7745、0.7967和0.8786)采集数据的检测效果。因此,结合高分辨率和UWF-OCTA采集数据有可能改善DR的早期和晚期检测,为加强DR管理提供基础,并为未来涉及扩展数据集和整合其他成像模式的工作指明了明确的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ead/10486731/b4087b1b7bc5/diagnostics-13-02770-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验