Speech Processing and Transmission Laboratory, Electrical Engineering Department, University of Chile, Santiago 8370451, Chile.
Hospital Clínico Universidad de Chile, Santiago 8380420, Chile.
Sensors (Basel). 2023 Sep 1;23(17):7590. doi: 10.3390/s23177590.
A respiratory distress estimation technique for telephony previously proposed by the authors is adapted and evaluated in real static and dynamic HRI scenarios. The system is evaluated with a telephone dataset re-recorded using the robotic platform designed and implemented for this study. In addition, the original telephone training data are modified using an environmental model that incorporates natural robot-generated and external noise sources and reverberant effects using room impulse responses (RIRs). The results indicate that the average accuracy and AUC are just 0.4% less than those obtained with matched training/testing conditions with simulated data. Quite surprisingly, there is not much difference in accuracy and AUC between static and dynamic HRI conditions. Moreover, the beamforming methods delay-and-sum and MVDR lead to average improvement in accuracy and AUC equal to 8% and 2%, respectively, when applied to training and testing data. Regarding the complementarity of time-dependent and time-independent features, the combination of both types of classifiers provides the best joint accuracy and AUC score.
先前由作者提出的一种用于电话的呼吸窘迫估计技术在真实的静态和动态 HRI 场景中进行了适配和评估。该系统使用专为这项研究设计和实现的机器人平台重新录制的电话数据集进行了评估。此外,使用包含自然机器人生成和外部噪声源以及使用房间脉冲响应 (RIR) 的混响效果的环境模型修改了原始电话训练数据。结果表明,平均准确率和 AUC 仅比使用模拟数据进行匹配的训练/测试条件低 0.4%。令人惊讶的是,静态和动态 HRI 条件之间的准确率和 AUC 差异不大。此外,当应用于训练和测试数据时,延迟求和和 MVDR 波束形成方法分别导致平均准确率和 AUC 提高 8%和 2%。关于时变和时不变特征的互补性,两种类型的分类器的组合提供了最佳的联合准确率和 AUC 评分。