Suppr超能文献

合成对称破缺与可编程多细胞结构形成。

Synthetic symmetry breaking and programmable multicellular structure formation.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Cell Syst. 2023 Sep 20;14(9):806-818.e5. doi: 10.1016/j.cels.2023.08.001. Epub 2023 Sep 8.

Abstract

During development, cells undergo symmetry breaking into differentiated subpopulations that self-organize into complex structures. However, few tools exist to recapitulate these behaviors in a controllable and coupled manner. Here, we engineer a stochastic recombinase genetic switch tunable by small molecules to induce programmable symmetry breaking, commitment to downstream cell fates, and morphological self-organization. Inducers determine commitment probabilities, generating tunable subpopulations as a function of inducer dosage. We use this switch to control the cell-cell adhesion properties of cells committed to each fate. We generate a wide variety of 3D morphologies from a monoclonal population and develop a computational model showing high concordance with experimental results, yielding new quantitative insights into the relationship between cell-cell adhesion strengths and downstream morphologies. We expect that programmable symmetry breaking, generating precise and tunable subpopulation ratios and coupled to structure formation, will serve as an integral component of the toolbox for complex tissue and organoid engineering.

摘要

在发育过程中,细胞经历对称性破缺,分化为亚群,这些亚群自我组织成复杂的结构。然而,目前很少有工具能够以可控和耦合的方式再现这些行为。在这里,我们设计了一种受小分子调控的随机重组酶遗传开关,以诱导可编程的对称性破缺、下游细胞命运的确定和形态的自我组织。诱导剂决定了确定的概率,从而产生随诱导剂剂量变化的可调亚群。我们使用这个开关来控制每个命运所确定的细胞的细胞间黏附特性。我们从单克隆群体中生成了各种各样的 3D 形态,并开发了一个计算模型,该模型与实验结果高度一致,为细胞间黏附强度与下游形态之间的关系提供了新的定量见解。我们预计,可编程的对称性破缺,产生精确和可调的亚群比例,并与结构形成相耦合,将成为复杂组织和类器官工程工具包的一个组成部分。

相似文献

1
Synthetic symmetry breaking and programmable multicellular structure formation.
Cell Syst. 2023 Sep 20;14(9):806-818.e5. doi: 10.1016/j.cels.2023.08.001. Epub 2023 Sep 8.
2
Engineering Stem Cell Self-organization to Build Better Organoids.
Cell Stem Cell. 2019 Jun 6;24(6):860-876. doi: 10.1016/j.stem.2019.05.005.
3
Programming self-organizing multicellular structures with synthetic cell-cell signaling.
Science. 2018 Jul 13;361(6398):156-162. doi: 10.1126/science.aat0271. Epub 2018 May 31.
4
Synthetic developmental biology: Engineering approaches to guide multicellular organization.
Stem Cell Reports. 2022 Apr 12;17(4):715-733. doi: 10.1016/j.stemcr.2022.02.004. Epub 2022 Mar 10.
6
Bioengineering Self-Organizing Signaling Centers to Control Embryoid Body Pattern Elaboration.
ACS Synth Biol. 2021 Jun 18;10(6):1465-1480. doi: 10.1021/acssynbio.1c00060. Epub 2021 May 21.
7
Polarization of organoids by bioengineered symmetry breaking.
IBRO Neurosci Rep. 2024 May 21;17:22-31. doi: 10.1016/j.ibneur.2024.05.002. eCollection 2024 Dec.
8
Biomaterial-guided stem cell organoid engineering for modeling development and diseases.
Acta Biomater. 2021 Sep 15;132:23-36. doi: 10.1016/j.actbio.2021.01.026. Epub 2021 Jan 22.
9
Self-organization and symmetry breaking in intestinal organoid development.
Nature. 2019 May;569(7754):66-72. doi: 10.1038/s41586-019-1146-y. Epub 2019 Apr 24.
10
Synthetic developmental biology: build and control multicellular systems.
Curr Opin Chem Biol. 2019 Oct;52:9-15. doi: 10.1016/j.cbpa.2019.04.006. Epub 2019 May 15.

引用本文的文献

1
Totipotency or plenipotency: rethinking stem cell bipotentiality.
Curr Opin Genet Dev. 2025 Jun;92:102342. doi: 10.1016/j.gde.2025.102342. Epub 2025 Mar 19.
2
Designer mammalian living materials through genetic engineering.
Bioact Mater. 2025 Feb 15;48:135-148. doi: 10.1016/j.bioactmat.2025.02.007. eCollection 2025 Jun.
3
Open problems in synthetic multicellularity.
NPJ Syst Biol Appl. 2024 Dec 31;10(1):151. doi: 10.1038/s41540-024-00477-8.
4
Programming the elongation of mammalian cell aggregates with synthetic gene circuits.
bioRxiv. 2024 Dec 11:2024.12.11.627621. doi: 10.1101/2024.12.11.627621.

本文引用的文献

1
A computational modeling approach for predicting multicell spheroid patterns based on signaling-induced differential adhesion.
PLoS Comput Biol. 2022 Nov 28;18(11):e1010701. doi: 10.1371/journal.pcbi.1010701. eCollection 2022 Nov.
2
Stem cell-derived synthetic embryos self-assemble by exploiting cadherin codes and cortical tension.
Nat Cell Biol. 2022 Sep;24(9):1341-1349. doi: 10.1038/s41556-022-00984-y. Epub 2022 Sep 13.
3
PERSIST platform provides programmable RNA regulation using CRISPR endoRNases.
Nat Commun. 2022 May 11;13(1):2582. doi: 10.1038/s41467-022-30172-3.
5
Synthetic developmental biology: Engineering approaches to guide multicellular organization.
Stem Cell Reports. 2022 Apr 12;17(4):715-733. doi: 10.1016/j.stemcr.2022.02.004. Epub 2022 Mar 10.
6
Bioengineering methods for organoid systems.
Biol Cell. 2021 Dec;113(12):475-491. doi: 10.1111/boc.202000119. Epub 2021 Oct 13.
7
Novel synthetic biology approaches for developmental systems.
Stem Cell Reports. 2021 May 11;16(5):1051-1064. doi: 10.1016/j.stemcr.2021.04.007.
8
It takes a village to form embryo models.
Stem Cell Reports. 2021 May 11;16(5):1011-1013. doi: 10.1016/j.stemcr.2021.04.014.
9
Scalable recombinase-based gene expression cascades.
Nat Commun. 2021 May 11;12(1):2711. doi: 10.1038/s41467-021-22978-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验