Suppr超能文献

合成对称破缺与可编程多细胞结构形成。

Synthetic symmetry breaking and programmable multicellular structure formation.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Cell Syst. 2023 Sep 20;14(9):806-818.e5. doi: 10.1016/j.cels.2023.08.001. Epub 2023 Sep 8.

Abstract

During development, cells undergo symmetry breaking into differentiated subpopulations that self-organize into complex structures. However, few tools exist to recapitulate these behaviors in a controllable and coupled manner. Here, we engineer a stochastic recombinase genetic switch tunable by small molecules to induce programmable symmetry breaking, commitment to downstream cell fates, and morphological self-organization. Inducers determine commitment probabilities, generating tunable subpopulations as a function of inducer dosage. We use this switch to control the cell-cell adhesion properties of cells committed to each fate. We generate a wide variety of 3D morphologies from a monoclonal population and develop a computational model showing high concordance with experimental results, yielding new quantitative insights into the relationship between cell-cell adhesion strengths and downstream morphologies. We expect that programmable symmetry breaking, generating precise and tunable subpopulation ratios and coupled to structure formation, will serve as an integral component of the toolbox for complex tissue and organoid engineering.

摘要

在发育过程中,细胞经历对称性破缺,分化为亚群,这些亚群自我组织成复杂的结构。然而,目前很少有工具能够以可控和耦合的方式再现这些行为。在这里,我们设计了一种受小分子调控的随机重组酶遗传开关,以诱导可编程的对称性破缺、下游细胞命运的确定和形态的自我组织。诱导剂决定了确定的概率,从而产生随诱导剂剂量变化的可调亚群。我们使用这个开关来控制每个命运所确定的细胞的细胞间黏附特性。我们从单克隆群体中生成了各种各样的 3D 形态,并开发了一个计算模型,该模型与实验结果高度一致,为细胞间黏附强度与下游形态之间的关系提供了新的定量见解。我们预计,可编程的对称性破缺,产生精确和可调的亚群比例,并与结构形成相耦合,将成为复杂组织和类器官工程工具包的一个组成部分。

相似文献

1
Synthetic symmetry breaking and programmable multicellular structure formation.合成对称破缺与可编程多细胞结构形成。
Cell Syst. 2023 Sep 20;14(9):806-818.e5. doi: 10.1016/j.cels.2023.08.001. Epub 2023 Sep 8.
7
Polarization of organoids by bioengineered symmetry breaking.通过生物工程对称性破缺使类器官极化。
IBRO Neurosci Rep. 2024 May 21;17:22-31. doi: 10.1016/j.ibneur.2024.05.002. eCollection 2024 Dec.
9
10
Synthetic developmental biology: build and control multicellular systems.合成发育生物学:构建和控制多细胞系统。
Curr Opin Chem Biol. 2019 Oct;52:9-15. doi: 10.1016/j.cbpa.2019.04.006. Epub 2019 May 15.

引用本文的文献

1
Totipotency or plenipotency: rethinking stem cell bipotentiality.全能性或多能性:重新思考干细胞的双能性。
Curr Opin Genet Dev. 2025 Jun;92:102342. doi: 10.1016/j.gde.2025.102342. Epub 2025 Mar 19.
2
Designer mammalian living materials through genetic engineering.通过基因工程设计哺乳动物活体材料。
Bioact Mater. 2025 Feb 15;48:135-148. doi: 10.1016/j.bioactmat.2025.02.007. eCollection 2025 Jun.
3
Open problems in synthetic multicellularity.合成多细胞性中的开放性问题。
NPJ Syst Biol Appl. 2024 Dec 31;10(1):151. doi: 10.1038/s41540-024-00477-8.

本文引用的文献

6
Bioengineering methods for organoid systems.类器官系统的生物工程方法。
Biol Cell. 2021 Dec;113(12):475-491. doi: 10.1111/boc.202000119. Epub 2021 Oct 13.
7
Novel synthetic biology approaches for developmental systems.新型合成生物学方法在发育系统中的应用。
Stem Cell Reports. 2021 May 11;16(5):1051-1064. doi: 10.1016/j.stemcr.2021.04.007.
8
It takes a village to form embryo models.形成胚胎模型需要各方协作。
Stem Cell Reports. 2021 May 11;16(5):1011-1013. doi: 10.1016/j.stemcr.2021.04.014.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验