Suppr超能文献

采用软计算深度学习框架挖掘女性社会内容,以识别早期抑郁迹象的预先保护目标。

A pre-protective objective in mining females social contents for identification of early signs of depression using soft computing deep framework.

机构信息

Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 84428, Kingdom of Saudi Arabia.

Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.

出版信息

Sci Rep. 2023 Sep 9;13(1):14899. doi: 10.1038/s41598-023-40607-6.

Abstract

Currently, a noteworthy volume of information is available and shared every day through participation and communication of individuals on social media. These enormous contents with the right exploit and research leads to valuable discoveries. In this study, a deep framework of learning accurate detection of women's depression is proposed. It is beneficially guided by social media content of individual posts and tweets and an essential support from psycho-linguistic for providing the indicator depression signs vocabulary that creates the embedding words necessary for building the applied approach. The presented model is validated using dual datasets extracted from Twitter: the first dataset is general data formed by 700 women from different countries; the second contains only 80 women from KSA. A third benchmark dataset CLPsych 2015 is used for comparative analysis purposes. The model proved its performance on the three datasets and the obtained and reported in this paper results shows its effectiveness.

摘要

目前,个人在社交媒体上的参与和交流每天都会产生和分享大量的信息。这些巨大的内容如果能够得到正确的利用和研究,就会带来有价值的发现。在这项研究中,提出了一种深度学习框架,用于准确检测女性的抑郁症状。该框架通过个体帖子和推文的社交媒体内容以及心理语言学的重要支持,得到了有益的指导,为提供创建应用方法所需的嵌入词的抑郁症状词汇指标提供了支持。该模型使用从 Twitter 提取的两个数据集进行验证:第一个数据集是由来自不同国家的 700 名女性组成的通用数据;第二个数据集仅包含来自沙特阿拉伯的 80 名女性。第三个基准数据集 CLPsych 2015 用于比较分析目的。该模型在三个数据集上的表现都证明了它的性能,本文报告的结果显示了它的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7266/10492815/3122d04ef6b3/41598_2023_40607_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验