Suppr超能文献

用于植入应用的纳米结构Ti-13Nb-13Zr合金——材料科学、技术及生物学方面

Nanostructured Ti-13Nb-13Zr alloy for implant application-material scientific, technological, and biological aspects.

作者信息

Klinge Lina, Kluy Lukas, Spiegel Christopher, Siemers Carsten, Groche Peter, Coraça-Huber Débora

机构信息

Institute for Materials Science, TU Braunschweig, Braunschweig, Germany.

Institute for Production Engineering and Forming Machines, TU Darmstadt, Darmstadt, Germany.

出版信息

Front Bioeng Biotechnol. 2023 Aug 24;11:1255947. doi: 10.3389/fbioe.2023.1255947. eCollection 2023.

Abstract

In dentistry, the most commonly used implant materials are CP-Titanium Grade 4 and Ti-6Al-4V ELI, possessing comparably high Young's modulus (>100 GPa). In the present study, the second-generation titanium alloy Ti-13Nb-13Zr is investigated with respect to the production of advanced dental implant systems. This should be achieved by the fabrication of long semi-finished bars with high strength and sufficient ductility to allow the automated production of small implants at low Young's modulus (<80 GPa) to minimize stress shielding, bone resorption, and gap formation between the bone and implant. In addition, bacterial colonization is to be reduced, and bone adhesion is to be enhanced by adjusting the microstructure. To do so, a dedicated thermo-mechanical treatment for Ti-13Nb-13Zr has been developed. This includes the adaption of equal channel angular swaging, a modern process of severe plastic deformation to continuously manufacture nanostructured materials, to Ti-13Nb-13Zr and short-time recrystallization and ageing treatments. In particular, two-pass equal channel angular swaging at a deformation temperature of 150°C and a counterpressure of 8 MPa has successfully been used to avoid shear band formation during deformation and to produce long Ti-13Nb-13Zr bars of 8 mm diameter. During recrystallization treatment at 700°C for 10 min followed by water quenching, a sub-micron-size primary α-phase in a matrix of α″-phase was developed. Subsequent ageing at 500°C for 1 h leads to martensite decomposition and, thus, to a homogeneously nanostructured microstructure of α- and β-phase with substructures smaller than 200 nm. The resulting mechanical properties, especially the ultimate tensile strength of more than 990 MPa, fulfill the requirements of ASTM F1713 at Young's modulus of 73 GPa. Biological investigations show promising results in reducing bacterial biofilm formation and increased cell proliferation of osteoblasts compared to CP-Titanium Grade 4 and Ti-6Al-4V ELI, especially, if etched surfaces are applied.

摘要

在牙科领域,最常用的种植体材料是4级商业纯钛和超低间隙钛合金Ti-6Al-4V,它们具有相对较高的杨氏模量(>100 GPa)。在本研究中,对第二代钛合金Ti-13Nb-13Zr进行了研究,用于生产先进的牙科种植系统。这可以通过制造具有高强度和足够延展性的长半成品棒材来实现,以便在低杨氏模量(<80 GPa)下自动生产小型种植体,从而最大限度地减少应力屏蔽、骨吸收以及骨与种植体之间的间隙形成。此外,通过调整微观结构来减少细菌定植并增强骨黏附。为此,已开发出一种针对Ti-13Nb-13Zr的专用热机械处理方法。这包括对等通道角挤压进行调整,这是一种用于连续制造纳米结构材料的现代严重塑性变形工艺,使其适用于Ti-13Nb-13Zr,并进行短时再结晶和时效处理。特别是,在150°C的变形温度和8 MPa的反压力下进行的两道次等通道角挤压已成功用于避免变形过程中形成剪切带,并生产出直径为8 mm的长Ti-13Nb-13Zr棒材。在700°C下进行10分钟的再结晶处理并随后水淬后,在α″相基体中形成了亚微米尺寸的初生α相。随后在500°C下时效1小时会导致马氏体分解,从而形成α相和β相的均匀纳米结构微观组织,其亚结构尺寸小于200 nm。所得的力学性能,尤其是超过990 MPa的极限抗拉强度,在杨氏模量为73 GPa时满足ASTM F1713的要求。生物学研究表明,与4级商业纯钛和Ti-6Al-4V ELI相比,在减少细菌生物膜形成和增加成骨细胞的细胞增殖方面取得了有前景的结果,特别是在应用蚀刻表面的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/959c/10484403/169340835bd2/fbioe-11-1255947-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验