Li Shijia, Kulvicius Tomas, Tamosiunaite Minija, Wörgötter Florentin
Third Institute of Physics and Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany.
Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
Front Neurorobot. 2023 Aug 24;17:1218977. doi: 10.3389/fnbot.2023.1218977. eCollection 2023.
Traditional AI-planning methods for task planning in robotics require a symbolically encoded domain description. While powerful in well-defined scenarios, as well as human-interpretable, setting this up requires a substantial effort. Different from this, most everyday planning tasks are solved by humans intuitively, using mental imagery of the different planning steps. Here, we suggest that the same approach can be used for robots too, in cases which require only limited execution accuracy. In the current study, we propose a novel sub-symbolic method called Simulated Mental Imagery for Planning (SiMIP), which consists of perception, simulated action, success checking, and re-planning performed on 'imagined' images. We show that it is possible to implement mental imagery-based planning in an algorithmically sound way by combining regular convolutional neural networks and generative adversarial networks. With this method, the robot acquires the capability to use the initially existing scene to generate action plans without symbolic domain descriptions, while at the same time, plans remain human-interpretable, different from deep reinforcement learning, which is an alternative sub-symbolic approach. We create a data set from real scenes for a packing problem of having to correctly place different objects into different target slots. This way efficiency and success rate of this algorithm could be quantified.
机器人任务规划中的传统人工智能规划方法需要符号编码的领域描述。虽然在定义明确的场景中很强大,而且易于人类理解,但设置起来需要付出巨大努力。与此不同的是,大多数日常规划任务是人类通过对不同规划步骤的心理意象直观地解决的。在此,我们建议在只需要有限执行精度的情况下,机器人也可以采用同样的方法。在当前研究中,我们提出了一种名为“用于规划的模拟心理意象”(SiMIP)的新型亚符号方法,它由对“想象”图像执行的感知、模拟动作、成功检查和重新规划组成。我们表明,通过结合常规卷积神经网络和生成对抗网络,以算法合理的方式实现基于心理意象的规划是可能的。使用这种方法,机器人无需符号领域描述就能利用初始存在的场景生成行动计划,同时,与深度强化学习这种替代亚符号方法不同,这些计划仍然易于人类理解。我们从真实场景中创建了一个数据集,用于解决将不同物体正确放置到不同目标插槽的包装问题。通过这种方式,可以量化该算法的效率和成功率。