Suppr超能文献

脑龄预测在记忆门诊人群中的诊断准确性,并与临床可用的容积测量方法进行比较。

Diagnostic accuracy of brain age prediction in a memory clinic population and comparison with clinically available volumetric measures.

机构信息

The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.

Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.

出版信息

Sci Rep. 2023 Sep 11;13(1):14957. doi: 10.1038/s41598-023-42354-0.

Abstract

The aim of this study was to assess the diagnostic validity of a deep learning-based method estimating brain age based on magnetic resonance imaging (MRI) and to compare it with volumetrics obtained using NeuroQuant (NQ) in a clinical cohort. Brain age prediction was performed on minimally processed MRI data using deep convolutional neural networks and an independent training set. The brain age gap (difference between chronological and biological age) was calculated, and volumetrics were performed in 110 patients with dementia (Alzheimer's disease, frontotemporal dementia (FTD), and dementia with Lewy bodies), and 122 with non-dementia (subjective and mild cognitive impairment). Area-under-the-curve (AUC) based on receiver operating characteristics and logistic regression analyses were performed. The mean age was 67.1 (9.5) years and 48.7% (113) were females. The dementia versus non-dementia sensitivity and specificity of the volumetric measures exceeded 80% and yielded higher AUCs compared to BAG. The explained variance of the prediction of diagnostic stage increased when BAG was added to the volumetrics. Further, BAG separated patients with FTD from other dementia etiologies with > 80% sensitivity and specificity. NQ volumetrics outperformed BAG in terms of diagnostic discriminatory power but the two methods provided complementary information, and BAG discriminated FTD from other dementia etiologies.

摘要

本研究旨在评估一种基于磁共振成像(MRI)的深度学习方法估算脑龄的诊断准确性,并将其与使用神经定量(NeuroQuant,NQ)在临床队列中获得的体积进行比较。使用深度卷积神经网络和独立的训练集对最小处理的 MRI 数据进行脑龄预测。计算脑龄差距(实际年龄与生物学年龄的差异),并对 110 例痴呆症(阿尔茨海默病、额颞叶痴呆(FTD)和路易体痴呆)和 122 例非痴呆症(主观和轻度认知障碍)患者进行体积分析。采用受试者工作特征曲线下面积(AUC)和逻辑回归分析。平均年龄为 67.1(9.5)岁,48.7%(113 例)为女性。与 BAG 相比,体积测量的痴呆症与非痴呆症的灵敏度和特异性均超过 80%,AUC 更高。当将 BAG 添加到体积测量中时,预测诊断阶段的可解释方差增加。此外,BAG 以>80%的灵敏度和特异性将 FTD 患者与其他痴呆病因区分开来。NQ 体积在诊断区分能力方面优于 BAG,但两种方法提供了互补信息,BAG 可将 FTD 与其他痴呆病因区分开来。

相似文献

3
Fully automated structural MRI of the brain in clinical dementia workup.
Acta Radiol. 2017 Jun;58(6):740-747. doi: 10.1177/0284185116669874. Epub 2016 Sep 28.
5
Detecting frontotemporal dementia syndromes using MRI biomarkers.
Neuroimage Clin. 2019;22:101711. doi: 10.1016/j.nicl.2019.101711. Epub 2019 Feb 4.
8
Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease.
Neuroimage Clin. 2019;23:101811. doi: 10.1016/j.nicl.2019.101811. Epub 2019 Apr 3.

引用本文的文献

1
Complementary value of molecular, phenotypic, and functional aging biomarkers in dementia prediction.
Geroscience. 2025 Apr;47(2):2099-2118. doi: 10.1007/s11357-024-01376-w. Epub 2024 Oct 24.

本文引用的文献

3
Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes.
Neuropsychopharmacology. 2023 Jan;48(1):151-167. doi: 10.1038/s41386-022-01426-x. Epub 2022 Sep 2.
4
Deep neural networks learn general and clinically relevant representations of the ageing brain.
Neuroimage. 2022 Aug 1;256:119210. doi: 10.1016/j.neuroimage.2022.119210. Epub 2022 Apr 21.
5
Hippocampal Atrophy Subtypes of Alzheimer's Disease Using Automatic MRI in a Memory Clinic Cohort: Clinical Implications.
Dement Geriatr Cogn Disord. 2022;51(1):80-89. doi: 10.1159/000522382. Epub 2022 Mar 28.
6
The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics.
Nat Rev Drug Discov. 2022 Apr;21(4):306-318. doi: 10.1038/s41573-022-00391-w. Epub 2022 Feb 17.
7
Factors associated with brain ageing - a systematic review.
BMC Neurol. 2021 Aug 12;21(1):312. doi: 10.1186/s12883-021-02331-4.
9
Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review.
Psychiatry Res. 2020 Feb;284:112732. doi: 10.1016/j.psychres.2019.112732. Epub 2019 Dec 9.
10
Predicting Fazekas scores from automatic segmentations of white matter signal abnormalities.
Aging (Albany NY). 2020 Jan 12;12(1):894-901. doi: 10.18632/aging.102662.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验