Suppr超能文献

用于人类 Tau PET 成像研究的 Tau 阈值特征的生物统计学估计(BETTH)算法。

Biostatistical Estimation of Tau Threshold Hallmarks (BETTH) Algorithm for Human Tau PET Imaging Studies.

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania;

Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

J Nucl Med. 2023 Nov;64(11):1798-1805. doi: 10.2967/jnumed.123.265941. Epub 2023 Sep 14.

Abstract

A methodology for determining tau PET thresholds is needed to confidently detect early tau deposition. We compared multiple threshold-determining methods in participants who underwent either F-flortaucipir or F-MK-6240 PET scans. F-flortaucipir ( = 798) and F-MK-6240 ( = 216) scans were processed and sampled to obtain regional SUV ratios. Subsamples of the cohorts were based on participant diagnosis, age, amyloid-β status (positive or negative), and neurodegeneration status (positive or negative), creating older-adult (age ≥ 55 y) cognitively unimpaired (amyloid-β-negative, neurodegeneration-negative) and cognitively impaired (mild cognitive impairment/Alzheimer disease, amyloid-β-positive, neurodegeneration-positive) groups, and then were further subsampled via matching to reduce significant differences in diagnostic prevalence, age, and Mini-Mental State Examination score. We used the biostatistical estimation of tau threshold hallmarks (BETTH) algorithm to determine sensitivity and specificity in 6 composite regions. Parametric double receiver operating characteristic analysis yielded the greatest joint sensitivity in 5 of the 6 regions, whereas hierarchic clustering, gaussian mixture modeling, and k-means clustering all yielded perfect joint specificity (2.00) in all regions. When F-flortaucipir and F-MK-6240 are used, Alzheimer disease-related tau status is best assessed using 2 thresholds, a sensitivity one based on parametric double receiver operating characteristic analysis and a specificity one based on gaussian mixture modeling, delimiting an uncertainty zone indicating participants who may require further evaluation.

摘要

需要一种确定 tau PET 阈值的方法,以有信心地检测早期 tau 沉积。我们比较了在接受 F-flortaucipir 或 F-MK-6240 PET 扫描的参与者中使用的多种阈值确定方法。对 F-flortaucipir(=798)和 F-MK-6240(=216)扫描进行了处理和采样,以获得区域 SUV 比。队列的亚样本基于参与者的诊断、年龄、淀粉样蛋白-β状态(阳性或阴性)和神经退行性变状态(阳性或阴性),创建了老年认知正常(年龄≥55 岁,淀粉样蛋白-β阴性,神经退行性变阴性)和认知障碍(轻度认知障碍/阿尔茨海默病,淀粉样蛋白-β阳性,神经退行性变阳性)组,然后通过匹配进一步亚采样,以减少诊断流行率、年龄和 Mini-Mental State Examination 评分的显著差异。我们使用 tau 阈值特征的生物统计学估计(BETTH)算法在 6 个复合区域中确定敏感性和特异性。参数双重接收器操作特性分析在 6 个区域中的 5 个区域中产生了最大的联合敏感性,而层次聚类、高斯混合建模和 k-均值聚类在所有区域中均产生了完美的联合特异性(2.00)。当使用 F-flortaucipir 和 F-MK-6240 时,使用 2 个阈值来最好地评估与阿尔茨海默病相关的 tau 状态,一个基于参数双重接收器操作特性分析的敏感性阈值和一个基于高斯混合建模的特异性阈值,划定一个不确定性区域,指示可能需要进一步评估的参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56be/10626371/4a9964bde8c8/jnumed.123.265941absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验