Das Tanmoy, Youn Sukhyeong, Seo Jae Eun, Yang Eunyeong, Chang Jiwon
Department of System Semiconductor Engineering, Yonsei University, Seoul 03722, South Korea.
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea.
ACS Appl Mater Interfaces. 2023 Sep 27;15(38):45116-45127. doi: 10.1021/acsami.3c09351. Epub 2023 Sep 15.
Achieving effective polarity control of n- and p-type transistors based on two-dimensional (2D) materials is a critical challenge in the process of integrating transition metal dichalcogenides (TMDC) into complementary metal-oxide semiconductor (CMOS) logic circuits. Herein, we utilized a proficient and nondestructive method of electron-charge transfer to achieve a complete carrier polarity conversion from p-to n-type by depositing a thin layer of aluminum oxide (AlO) onto tungsten diselenide (WSe). By utilizing the AlO passivation layer, we observed precisely tuned n-type behavior in contrast to transistors fabricated on the as-grown WSe film without any passivation layer, which display prominent p-type behavior. The polarity-transformed n-type WSe transistor from the pristine p-type shows the maximum ON current of ∼0.1 μA accompanied by a high electron mobility of 7 cm V s at a drain voltage () of 1 V. We successfully showcased a homogeneous CMOS inverter utilizing 2D-TMDC which exhibits an impressive voltage gain of 7 at = 5 V. Moreover, this effective polarity control approach was further expanded upon to successfully demonstrate a range of logic circuits such as AND, OR, NAND, NOR logic gates, and SRAM. The proposed methodology possesses significant promise for facilitating the advancement of high-density circuitry components utilizing 2D-TMDC.
在将过渡金属二卤化物(TMDC)集成到互补金属氧化物半导体(CMOS)逻辑电路的过程中,实现基于二维(2D)材料的n型和p型晶体管的有效极性控制是一项关键挑战。在此,我们采用了一种熟练且无损的电子电荷转移方法,通过在二硒化钨(WSe)上沉积一层薄氧化铝(AlO),实现了从p型到n型的完全载流子极性转换。通过利用AlO钝化层,我们观察到与在未进行任何钝化层处理的生长态WSe薄膜上制造的晶体管相比,精确调谐的n型行为,后者表现出显著的p型行为。从原始p型转变为极性的n型WSe晶体管在漏极电压()为1 V时,显示出约0.1 μA的最大导通电流以及7 cm² V⁻¹ s⁻¹的高电子迁移率。我们成功展示了一种利用2D-TMDC的均匀CMOS反相器,在 = 5 V时表现出令人印象深刻的7的电压增益。此外,这种有效的极性控制方法进一步扩展,成功演示了一系列逻辑电路,如与、或、与非、或非逻辑门以及静态随机存取存储器(SRAM)。所提出的方法对于推动利用2D-TMDC的高密度电路组件的发展具有重大前景。