Suppr超能文献

为什么乳酸菌能在链延长微生物群落中茁壮成长?

Why do lactic acid bacteria thrive in chain elongation microbiomes?

作者信息

Ulčar Barbara, Regueira Alberte, Podojsteršek Maja, Boon Nico, Ganigué Ramon

机构信息

Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium.

Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Gent, Belgium.

出版信息

Front Bioeng Biotechnol. 2024 Jan 11;11:1291007. doi: 10.3389/fbioe.2023.1291007. eCollection 2023.

Abstract

Efficient waste management is necessary to transition towards a more sustainable society. An emerging trend is to use mixed culture biotechnology to produce chemicals from organic waste. Insights into the metabolic interactions between community members and their growth characterization are needed to mediate knowledge-driven bioprocess development and optimization. Here, a granular sludge bioprocess for the production of caproic acid through sugar-based chain elongation metabolism was established. Lactic acid and chain-elongating bacteria were identified as the two main functional guilds in the granular community. The growth features of the main community representatives (isolate G03 for lactic acid bacteria and type strain for chain-elongating bacteria) were characterized. The measured growth rates of lactic acid bacteria (0.051 ± 0.005 h) were two times higher than those of chain-elongating bacteria (0.026 ± 0.004 h), while the biomass yields of lactic acid bacteria (0.120 ± 0.005 g biomass/g glucose) were two times lower than that of chain-elongating bacteria (0.239 ± 0.007 g biomass/g glucose). This points towards differential growth strategies, with lactic acid bacteria resembling that of a r-strategist and chain-elongating bacteria resembling that of a K-strategist. Furthermore, the half-saturation constant of glucose for was determined to be 0.35 ± 0.05 g/L of glucose. A linear trend of caproic acid inhibition on the growth of was observed, and the growth inhibitory caproic acid concentration was predicted to be 13.6 ± 0.5 g/L, which is the highest reported so far. The pre-adjustment of to 4 g/L of caproic acid did not improve the overall resistance to it, but did restore the growth rates at low caproic acid concentrations (1-4 g/L) to the baseline values (i.e., growth rate at 0 g/L of caproic acid). High resistance to caproic acid enables lactic acid bacteria to persist and thrive in the systems intended for caproic acid production. Here, insights into the growth of two main functional guilds of sugar-based chain elongation systems are provided which allows for a better understanding of their interactions and promotes future bioprocess design and optimization.

摘要

高效的废物管理对于向更可持续的社会转型至关重要。一个新兴趋势是利用混合培养生物技术从有机废物中生产化学品。为了推动基于知识的生物过程开发和优化,需要深入了解群落成员之间的代谢相互作用及其生长特性。在此,建立了一种通过基于糖的链延长代谢生产己酸的颗粒污泥生物过程。乳酸细菌和链延长细菌被确定为颗粒群落中的两个主要功能类群。对主要群落代表(乳酸菌的分离株G03和链延长细菌的模式菌株)的生长特性进行了表征。测得的乳酸菌生长速率(0.051±0.005 h⁻¹)是链延长细菌(0.026±0.004 h⁻¹)的两倍,而乳酸菌的生物量产量(0.120±0.005 g生物量/g葡萄糖)比链延长细菌(0.239±0.007 g生物量/g葡萄糖)低两倍。这表明了不同的生长策略,乳酸菌类似于r-策略者,链延长细菌类似于K-策略者。此外,确定了葡萄糖对该菌的半饱和常数为0.35±0.05 g/L葡萄糖。观察到己酸对该菌生长的抑制呈线性趋势,并预测生长抑制性己酸浓度为13.6±0.5 g/L,这是迄今为止报道的最高值。将该菌预调节至4 g/L己酸并不能提高其对己酸的总体抗性,但确实将低己酸浓度(1 - 4 g/L)下的生长速率恢复到基线值(即0 g/L己酸时的生长速率)。对己酸的高抗性使乳酸菌能够在用于己酸生产的系统中持续存在并茁壮成长。在此,提供了对基于糖的链延长系统的两个主要功能类群生长的见解,这有助于更好地理解它们之间的相互作用,并促进未来生物过程的设计和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/199a/10809155/48042e4ec643/fbioe-11-1291007-g001.jpg

相似文献

1
Why do lactic acid bacteria thrive in chain elongation microbiomes?
Front Bioeng Biotechnol. 2024 Jan 11;11:1291007. doi: 10.3389/fbioe.2023.1291007. eCollection 2023.
2
Thermophilic caproic acid production from grass juice by sugar-based chain elongation.
Sci Total Environ. 2023 Feb 20;860:160501. doi: 10.1016/j.scitotenv.2022.160501. Epub 2022 Nov 24.
3
High-rate conversion of lactic acid-rich streams to caproic acid in a fermentative granular system.
Bioresour Technol. 2022 Jul;355:127250. doi: 10.1016/j.biortech.2022.127250. Epub 2022 May 10.
5
Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation.
Water Res. 2020 Nov 1;186:116396. doi: 10.1016/j.watres.2020.116396. Epub 2020 Sep 7.
6
Predicting the performance of chain elongating microbiomes through flow cytometric fingerprinting.
Water Res. 2023 Sep 1;243:120323. doi: 10.1016/j.watres.2023.120323. Epub 2023 Jul 9.
7
Electricity-assisted production of caproic acid from grass.
Biotechnol Biofuels. 2017 Jul 11;10:180. doi: 10.1186/s13068-017-0863-4. eCollection 2017.
8
Biochar confers significant microbial resistance to ammonia toxicity in n-caproic acid production.
Water Res. 2024 Nov 15;266:122367. doi: 10.1016/j.watres.2024.122367. Epub 2024 Sep 1.
9
Efficient caproic acid production from lignocellulosic biomass by bio-augmented mixed microorganisms.
Bioresour Technol. 2024 May;399:130565. doi: 10.1016/j.biortech.2024.130565. Epub 2024 Mar 8.
10
Explainable machine learning-driven predictive performance and process parameter optimization for caproic acid production.
Bioresour Technol. 2024 Oct;410:131311. doi: 10.1016/j.biortech.2024.131311. Epub 2024 Aug 19.

引用本文的文献

本文引用的文献

1
Trophic interactions shape the spatial organization of medium-chain carboxylic acid producing granular biofilm communities.
ISME J. 2023 Nov;17(11):2014-2022. doi: 10.1038/s41396-023-01508-8. Epub 2023 Sep 15.
2
KEGG for taxonomy-based analysis of pathways and genomes.
Nucleic Acids Res. 2023 Jan 6;51(D1):D587-D592. doi: 10.1093/nar/gkac963.
4
Production of caproic acid by Rummeliibacillus suwonensis 3B-1 isolated from the pit mud of strong-flavor baijiu.
J Biotechnol. 2022 Nov 10;358:33-40. doi: 10.1016/j.jbiotec.2022.08.017. Epub 2022 Aug 29.
5
High-rate conversion of lactic acid-rich streams to caproic acid in a fermentative granular system.
Bioresour Technol. 2022 Jul;355:127250. doi: 10.1016/j.biortech.2022.127250. Epub 2022 May 10.
6
The r/K selection theory and its application in biological wastewater treatment processes.
Sci Total Environ. 2022 Jun 10;824:153836. doi: 10.1016/j.scitotenv.2022.153836. Epub 2022 Feb 14.
7
sp. nov., isolated from pit clay used for the production of Chinese strong aroma-type liquor.
Int J Syst Evol Microbiol. 2022 Jan;72(1). doi: 10.1099/ijsem.0.005206.
8
Chain elongation process for caproate production using lactate as electron donor in Megasphaera hexanoica.
Bioresour Technol. 2022 Feb;346:126660. doi: 10.1016/j.biortech.2021.126660. Epub 2021 Dec 30.
9
Adaptability of a Caproate-Producing Bacterium Contributes to Its Dominance in an Anaerobic Fermentation System.
Appl Environ Microbiol. 2021 Sep 28;87(20):e0120321. doi: 10.1128/AEM.01203-21. Epub 2021 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验