Suppr超能文献

基于放射组学的模型预测肝移植受者移植物纤维化的研究:一项初步研究。

Development of a Radiomics-Based Model to Predict Graft Fibrosis in Liver Transplant Recipients: A Pilot Study.

机构信息

Ajmera Transplant Program, Toronto General Hospital, University Health Network, Toronto, ON, Canada.

Division of Gastroenterology & Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

Transpl Int. 2023 Sep 1;36:11149. doi: 10.3389/ti.2023.11149. eCollection 2023.

Abstract

Liver Transplantation is complicated by recurrent fibrosis in 40% of recipients. We evaluated the ability of clinical and radiomic features to flag patients at risk of developing future graft fibrosis. CT scans of 254 patients at 3-6 months post-liver transplant were retrospectively analyzed. Volumetric radiomic features were extracted from the portal phase using an Artificial Intelligence-based tool (PyRadiomics). The primary endpoint was clinically significant (≥F2) graft fibrosis. A 10-fold cross-validated LASSO model using clinical and radiomic features was developed. In total, 75 patients (29.5%) developed ≥F2 fibrosis by a median of 19 (4.3-121.8) months. The maximum liver attenuation at the venous phase (a radiomic feature reflecting venous perfusion), primary etiology, donor/recipient age, recurrence of disease, brain-dead donor, tacrolimus use at 3 months, and APRI score at 3 months were predictive of ≥F2 fibrosis. The combination of radiomics and the clinical features increased the AUC to 0.811 from 0.793 for the clinical-only model ( = 0.008) and from 0.664 for the radiomics-only model ( < 0.001) to predict future ≥F2 fibrosis. This pilot study exploring the role of radiomics demonstrates that the addition of radiomic features in a clinical model increased the model's performance. Further studies are required to investigate the generalizability of this experimental tool.

摘要

肝移植后 40%的受者会出现复发性纤维化。我们评估了临床和放射组学特征标记发生未来移植物纤维化风险患者的能力。回顾性分析了 254 例肝移植后 3-6 个月的 CT 扫描。使用基于人工智能的工具(PyRadiomics)从门静脉期提取容积放射组学特征。主要终点是临床显著(≥F2)移植物纤维化。使用临床和放射组学特征开发了 10 倍交叉验证的 LASSO 模型。共有 75 例患者(29.5%)在中位数为 19(4.3-121.8)个月时发生≥F2 纤维化。静脉期最大肝衰减(反映静脉灌注的放射组学特征)、原发性病因、供体/受体年龄、疾病复发、脑死亡供体、3 个月时使用他克莫司、3 个月时 APRI 评分预测≥F2 纤维化。放射组学与临床特征的结合将 AUC 从仅临床模型的 0.793 提高到 0.811( = 0.008),从仅放射组学模型的 0.664 提高到 0.001( < 0.001),以预测未来≥F2 纤维化。这项探索放射组学作用的初步研究表明,在临床模型中添加放射组学特征可提高模型的性能。需要进一步研究来研究这个实验工具的普遍性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b394/10503435/8e12793ab016/ti-36-11149-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验