Brollo Maria E F, Pinheiro Ivanei F, Bassani Gabriel S, Varet Guillaume, Merino-Garcia Daniel, Guersoni Vanessa C B, Knobel Marcelo, Bannwart Antonio C, van der Geest Charlie, Muraca Diego
Physics Institute "Gleb Wataghin" (IFGW), University of Campinas (Unicamp), Campinas, São Paulo 13083-859, Brazil.
Center for Energy and Petroleum Studies (CEPETRO), University of Campinas (Unicamp), Campinas, São Paulo 13083-896, Brazil.
ACS Omega. 2023 Aug 28;8(36):32520-32525. doi: 10.1021/acsomega.3c02832. eCollection 2023 Sep 12.
An essential part for crude oil extraction is flow assurance, being critical to maintain a financially sustainable flow while getting the petroleum to the surface. When not well managed, it can develop into a significant issue for the OG industry. By heating the fluids, problems with flow assurance, including paraffin deposition, asphaltene, and methane hydrate, can be reduced. Also, as the temperature rises, a liquid's viscosity decreases. Research focusing on the application of magnetic nanoparticles (NPs) in the oil industry is very recent. When magnetic nanofluids are exposed to an alternating magnetic field, the viscosity decreases by several orders of magnitude as a result of the fluid's temperature rising due to a phenomenon known as magnetic hyperthermia. This work focuses on the use of magnetic NPs (9 nm) in heavy crude oil (API 19.0). The frequency and strength of the magnetic field, as well as the characteristics of the fluid and the NPs intrinsic properties all affect the heating efficiency. For all of the experimental settings in this work, the flowloop's temperature increased, reaching a maximum of Δ = 16.3 °C, using 1% wt NPs at the maximum available frequency of the equipment (533 kHz) and the highest field intensity for this frequency (14 kA/m), with a flow rate of 1.2 g/s. This increase in temperature causes a decrease of nearly 45% on the heavy crude oil viscosity, and if properly implemented, could substantially increase oil flow in the field during production.
原油开采的一个重要部分是流动保障,这对于在将石油开采至地面的同时维持经济上可持续的流量至关重要。如果管理不善,它可能会成为石油和天然气行业的一个重大问题。通过加热流体,可以减少流动保障方面的问题,包括石蜡沉积、沥青质和甲烷水合物。此外,随着温度升高,液体的粘度会降低。专注于磁性纳米颗粒(NPs)在石油工业中应用的研究是最近才开展的。当磁性纳米流体暴露于交变磁场时,由于磁热效应这一现象导致流体温度升高,其粘度会降低几个数量级。这项工作聚焦于在重质原油(美国石油学会度为19.0)中使用磁性纳米颗粒(9纳米)。磁场的频率和强度,以及流体的特性和纳米颗粒的固有属性都会影响加热效率。对于这项工作中的所有实验设置,在设备的最大可用频率(533千赫)和该频率下的最高场强(14千安/米)下,使用1%重量比的纳米颗粒,流量为1.2克/秒时,流动回路的温度升高,最高达到Δ = 16.3°C。温度的升高使重质原油的粘度降低了近45%,如果实施得当,在生产过程中可大幅增加油田的油流量。