Suppr超能文献

基于放射组学和 automl 预测脑龄差距:一种有前景的与年龄相关的脑退行性变生物标志物方法。

Predicting brain age gap with radiomics and automl: A Promising approach for age-Related brain degeneration biomarkers.

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, China.

School of Information Science and Engineering, Shandong Normal University, Jinan, China.

出版信息

J Neuroradiol. 2024 May;51(3):265-273. doi: 10.1016/j.neurad.2023.09.002. Epub 2023 Sep 16.

Abstract

The Brain Age Gap (BAG), which refers to the difference between chronological age and predicted neuroimaging age, is proposed as a potential biomarker for age-related brain degeneration. However, existing brain age prediction models usually rely on a single marker and can not discover meaningful hidden information in radiographic images. This study focuses on the application of radiomics, an advanced imaging analysis technique, combined with automated machine learning to predict BAG. Our methods achieve a promising result with a mean absolute error of 1.509 using the Alzheimer's Disease Neuroimaging Initiative dataset. Furthermore, we find that the hippocampus and parahippocampal gyrus play a significant role in predicting age with interpretable method called SHapley Additive exPlanations. Additionally, our investigation of age prediction discrepancies between patients with Alzheimer's disease (AD) and those with mild cognitive impairment (MCI) reveals a notable correlation with clinical cognitive assessment scale scores. This suggests that BAG has the potential to serve as a biomarker to support the diagnosis of AD and MCI. Overall, this study presents valuable insights into the application of neuroimaging models in the diagnosis of neurodegenerative diseases.

摘要

脑龄差距(BAG)是指实际年龄和预测神经影像学年龄之间的差异,被认为是一种与年龄相关的大脑退化的潜在生物标志物。然而,现有的大脑年龄预测模型通常依赖于单一的标志物,无法发现放射影像中的有意义的隐藏信息。本研究专注于将放射组学(一种先进的影像分析技术)与自动化机器学习相结合,应用于 BAG 的预测。我们的方法在使用阿尔茨海默病神经影像学倡议数据集时取得了 1.509 的平均绝对误差的有前途的结果。此外,我们发现海马体和海马旁回在通过可解释的 SHapley Additive exPlanations 方法预测年龄时发挥了重要作用。此外,我们对阿尔茨海默病(AD)患者和轻度认知障碍(MCI)患者之间的年龄预测差异的研究与临床认知评估量表评分有显著相关性。这表明 BAG 有可能作为支持 AD 和 MCI 诊断的生物标志物。总的来说,这项研究为神经影像学模型在神经退行性疾病诊断中的应用提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验