National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China.
Beijing Academy of Artificial Intelligence (BAAI), Beijing, 100084, China.
Nat Commun. 2023 Sep 18;14(1):5798. doi: 10.1038/s41467-023-41553-7.
Biophysically detailed multi-compartment models are powerful tools to explore computational principles of the brain and also serve as a theoretical framework to generate algorithms for artificial intelligence (AI) systems. However, the expensive computational cost severely limits the applications in both the neuroscience and AI fields. The major bottleneck during simulating detailed compartment models is the ability of a simulator to solve large systems of linear equations. Here, we present a novel Dendritic Hierarchical Scheduling (DHS) method to markedly accelerate such a process. We theoretically prove that the DHS implementation is computationally optimal and accurate. This GPU-based method performs with 2-3 orders of magnitude higher speed than that of the classic serial Hines method in the conventional CPU platform. We build a DeepDendrite framework, which integrates the DHS method and the GPU computing engine of the NEURON simulator and demonstrate applications of DeepDendrite in neuroscience tasks. We investigate how spatial patterns of spine inputs affect neuronal excitability in a detailed human pyramidal neuron model with 25,000 spines. Furthermore, we provide a brief discussion on the potential of DeepDendrite for AI, specifically highlighting its ability to enable the efficient training of biophysically detailed models in typical image classification tasks.
生物物理详细的多腔室模型是探索大脑计算原理的有力工具,也是为人工智能 (AI) 系统生成算法的理论框架。然而,昂贵的计算成本严重限制了神经科学和人工智能领域的应用。在模拟详细的腔室模型时,主要的瓶颈是模拟器解决大型线性方程组的能力。在这里,我们提出了一种新的树突分层调度 (DHS) 方法来显著加速这个过程。我们从理论上证明了 DHS 实现的计算是最优和准确的。这种基于 GPU 的方法在传统的 CPU 平台上比经典的串行 Hines 方法快 2-3 个数量级。我们构建了一个 DeepDendrite 框架,该框架集成了 DHS 方法和神经元模拟器的 GPU 计算引擎,并展示了 DeepDendrite 在神经科学任务中的应用。我们研究了在具有 25000 个树突的详细人类锥体神经元模型中,树突棘输入的空间模式如何影响神经元的兴奋性。此外,我们还简要讨论了 DeepDendrite 在人工智能方面的潜力,特别是强调了它在典型图像分类任务中实现生物物理详细模型高效训练的能力。