Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
Nat Genet. 2023 Oct;55(10):1769-1776. doi: 10.1038/s41588-023-01500-0. Epub 2023 Sep 18.
Genome-wide association studies (GWASs) have been mostly conducted in populations of European ancestry, which currently limits the transferability of their findings to other populations. Here, we show, through theory, simulations and applications to real data, that adjustment of GWAS analyses for polygenic scores (PGSs) increases the statistical power for discovery across all ancestries. We applied this method to analyze seven traits available in three large biobanks with participants of East Asian ancestry (n = 340,000 in total) and report 139 additional associations across traits. We also present a two-stage meta-analysis strategy whereby, in contributing cohorts, a PGS-adjusted GWAS is rerun using PGSs derived from a first round of a standard meta-analysis. On average, across traits, this approach yields a 1.26-fold increase in the number of detected associations (range 1.07- to 1.76-fold increase). Altogether, our study demonstrates the value of using PGSs to increase the power of GWASs in underrepresented populations and promotes such an analytical strategy for future GWAS meta-analyses.
全基因组关联研究(GWAS)主要在欧洲血统的人群中进行,这目前限制了他们的发现结果在其他人群中的可转移性。在这里,我们通过理论、模拟和对真实数据的应用表明,通过多基因评分(PGS)调整 GWAS 分析可以提高在所有祖源中的发现的统计功效。我们应用这种方法分析了三个大型生物库中可用的七个特征,这些生物库的参与者都具有东亚血统(总计 34 万人),并在这些特征中报告了 139 个额外的关联。我们还提出了一种两阶段荟萃分析策略,其中,在贡献队列中,使用从第一轮标准荟萃分析中得出的 PGS 重新运行经过 PGS 调整的 GWAS。平均而言,在各个特征中,这种方法可以使检测到的关联数量增加 1.26 倍(范围为 1.07 至 1.76 倍)。总的来说,我们的研究表明,使用 PGS 增加代表性不足人群中 GWAS 功效的价值,并为未来的 GWAS 荟萃分析推广这种分析策略。