文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用多任务学习和深度放射组学预测CT扫描中表现为磨玻璃结节的肺腺癌的侵袭性。

Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics.

作者信息

Wang Xiang, Li Qingchu, Cai Jiali, Wang Wei, Xu Peng, Zhang Yiqian, Fang Qu, Fu Chicheng, Fan Li, Xiao Yi, Liu Shiyuan

机构信息

Department of Radiology, Changzheng Hospital of the Second Military Medical University, Shanghai, China.

Shanghai Aitrox Technology Corporation Limited, Shanghai, China.

出版信息

Transl Lung Cancer Res. 2020 Aug;9(4):1397-1406. doi: 10.21037/tlcr-20-370.


DOI:10.21037/tlcr-20-370
PMID:32953512
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7481614/
Abstract

BACKGROUND: Due to different treatment method and prognosis of different subtypes of lung adenocarcinomas appearing as ground-glass nodules (GGNs) on computed tomography (CT) scan, it is important to classify invasive adenocarcinomas from non-invasive adenocarcinomas. The purpose of this paper is to build and evaluate the performance of deep learning networks on the differentiation the invasiveness of lung adenocarcinoma appearing as GGNs. METHODS: This retrospective study included 886 GGNs from 794 pathological confirmed patients with lung adenocarcinoma for training and testing the proposed networks. Three deep learning networks, namely XimaNet (deep learning-based classification model), XimaSharp (classification and nodule segmentation model), and Deep-RadNet (deep learning and radiomics combined classification model, i.e., deep radiomics) were built. Three classification tasks, namely task 1: classification of AAH/AIS and MIA, task 2: classification of MIA and IAC, and task 3: classification of non-invasive adenocarcinomas and invasive adenocarcinomas (AAH/AIS&MIA and IAC) were conducted to evaluate the model performance. The Z-test was used to compare the model performance. RESULTS: The AUC for classification of AAH/AIS with MIA were 0.891, 0.841 and 0.779 for Deep-RadNet, XimaNet and XimaSharp respectively. The AUC for classification of MIA with IAC were 0.889, 0.785 and 0.778 for three networks and AUC for classification of AAH/AIS&MIA with IAC were 0.941, 0.892 and 0.827 respectively. The performance of deep_RadNet was better than the other two models with the Z-test (P<0.05). CONCLUSIONS: Deep-RadNet with the visual heat map could evaluate the invasiveness of GGNs accurately and intuitively, providing a theoretical basis for individualized and accurate medical treatment of patients with GGNs.

摘要

背景:由于计算机断层扫描(CT)上表现为磨玻璃结节(GGN)的不同亚型肺腺癌的治疗方法和预后不同,区分浸润性腺癌和非浸润性腺癌很重要。本文的目的是构建并评估深度学习网络在鉴别表现为GGN的肺腺癌浸润性方面的性能。 方法:这项回顾性研究纳入了794例经病理确诊的肺腺癌患者的886个GGN,用于训练和测试所提出的网络。构建了三个深度学习网络,即西玛网(基于深度学习的分类模型)、西玛锐(分类和结节分割模型)和深度放射网(深度学习与放射组学相结合的分类模型,即深度放射组学)。进行了三项分类任务,即任务1:非典型腺瘤样增生/原位腺癌(AAH/AIS)与微浸润腺癌(MIA)的分类,任务2:MIA与浸润性腺癌(IAC)的分类,任务3:非浸润性腺癌(AAH/AIS&MIA)与浸润性腺癌(IAC)的分类,以评估模型性能。采用Z检验比较模型性能。 结果:深度放射网、西玛网和西玛锐对AAH/AIS与MIA分类的曲线下面积(AUC)分别为0.891、0.841和0.779。三个网络对MIA与IAC分类的AUC分别为0.889、0.785和0.778,对AAH/AIS&MIA与IAC分类的AUC分别为0.941、0.892和0.827。经Z检验,深度放射网的性能优于其他两个模型(P<0.05)。 结论:带有可视化热图的深度放射网能够准确直观地评估GGN的浸润性,为GGN患者的个体化精准医疗提供理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/3cd5b3c26667/tlcr-09-04-1397-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/de57ec22296a/tlcr-09-04-1397-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/c8a60ca0234f/tlcr-09-04-1397-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/fdc2c84b5eef/tlcr-09-04-1397-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/3cd5b3c26667/tlcr-09-04-1397-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/de57ec22296a/tlcr-09-04-1397-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/c8a60ca0234f/tlcr-09-04-1397-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/fdc2c84b5eef/tlcr-09-04-1397-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd0f/7481614/3cd5b3c26667/tlcr-09-04-1397-f4.jpg

相似文献

[1]
Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics.

Transl Lung Cancer Res. 2020-8

[2]
3D deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation.

Comput Med Imaging Graph. 2021-3

[3]
Determining the invasiveness of ground-glass nodules using a 3D multi-task network.

Eur Radiol. 2021-9

[4]
A triple-classification for the evaluation of lung nodules manifesting as pure ground-glass sign: a CT-based radiomic analysis.

BMC Med Imaging. 2022-7-27

[5]
Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT.

AJR Am J Roentgenol. 2024-1

[6]
Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring ≤10 mm on thin-section computed tomography.

Cancer Imaging. 2014-11-20

[7]
Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan.

Front Oncol. 2020-3-31

[8]
Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images.

Med Phys. 2020-4

[9]
Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs.

Biosci Rep. 2022-1-28

[10]
Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifesting as subcentimeter ground glass nodules.

Sci Rep. 2021-2-11

引用本文的文献

[1]
Evaluation of locoregional invasiveness of early lung adenocarcinoma manifesting as ground-glass nodules via [Ga]Ga-FAPI-46 PET/CT imaging.

Eur J Nucl Med Mol Imaging. 2025-5-24

[2]
Performance of deep learning model and radiomics model for preoperative prediction of spread through air spaces in the surgically resected lung adenocarcinoma: a two-center comparative study.

Transl Lung Cancer Res. 2024-12-31

[3]
Predicting the invasiveness of ground-glass opacity predominant lung adenocarcinoma with clinical stage Ia: a CT-based semantic and radiomics analysis.

J Thorac Dis. 2024-10-31

[4]
CT-based radiomics combined with clinical features for invasiveness prediction and pathological subtypes classification of subsolid pulmonary nodules.

Eur J Radiol Open. 2024-6-27

[5]
Integrated whole-exome and bulk transcriptome sequencing delineates the dynamic evolution from preneoplasia to invasive lung adenocarcinoma featured with ground-glass nodules.

Cancer Med. 2024-6

[6]
Res-TransNet: A Hybrid deep Learning Network for Predicting Pathological Subtypes of lung Adenocarcinoma in CT Images.

J Imaging Inform Med. 2024-12

[7]
Development of a modified 3D region proposal network for lung nodule detection in computed tomography scans: a secondary analysis of lung nodule datasets.

Cancer Imaging. 2024-3-20

[8]
AI/ML advances in non-small cell lung cancer biomarker discovery.

Front Oncol. 2023-12-11

[9]
Application value of a computer-aided diagnosis and management system for the detection of lung nodules.

Quant Imaging Med Surg. 2023-10-1

[10]
Discrimination of ground-glass nodular lung adenocarcinoma pathological subtypes via transfer learning: A multicenter study.

Cancer Med. 2023-9

本文引用的文献

[1]
Clinicopathologic Features and Genetic Alterations in Adenocarcinoma In Situ and Minimally Invasive Adenocarcinoma of the Lung: Long-Term Follow-Up Study of 121 Asian Patients.

Ann Surg Oncol. 2020-8

[2]
Accuracy and complications of CT-guided pulmonary core biopsy in small nodules: a single-center experience.

Cancer Imaging. 2019-7-23

[3]
Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?

Eur Radiol. 2019-3-18

[4]
Breast cancer detection using deep convolutional neural networks and support vector machines.

PeerJ. 2019-1-28

[5]
Lung Adenocarcinomas Manifesting as Radiological Part-Solid Nodules Define a Special Clinical Subtype.

J Thorac Oncol. 2019-1-17

[6]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

[7]
Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule.

Eur Radiol. 2018-7-2

[8]
Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules.

Biomed Eng Online. 2018-2-7

[9]
Computational Radiomics System to Decode the Radiographic Phenotype.

Cancer Res. 2017-11-1

[10]
Tumor heterogeneity assessed by texture analysis on contrast-enhanced CT in lung adenocarcinoma: association with pathologic grade.

Oncotarget. 2017-2-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索