Suppr超能文献

MTANet:用于医学图像自动分割和分类的多任务注意力网络。

MTANet: Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification.

出版信息

IEEE Trans Med Imaging. 2024 Feb;43(2):674-685. doi: 10.1109/TMI.2023.3317088. Epub 2024 Feb 2.

Abstract

Medical image segmentation and classification are two of the most key steps in computer-aided clinical diagnosis. The region of interest were usually segmented in a proper manner to extract useful features for further disease classification. However, these methods are computationally complex and time-consuming. In this paper, we proposed a one-stage multi-task attention network (MTANet) which efficiently classifies objects in an image while generating a high-quality segmentation mask for each medical object. A reverse addition attention module was designed in the segmentation task to fusion areas in global map and boundary cues in high-resolution features, and an attention bottleneck module was used in the classification task for image feature and clinical feature fusion. We evaluated the performance of MTANet with CNN-based and transformer-based architectures across three imaging modalities for different tasks: CVC-ClinicDB dataset for polyp segmentation, ISIC-2018 dataset for skin lesion segmentation, and our private ultrasound dataset for liver tumor segmentation and classification. Our proposed model outperformed state-of-the-art models on all three datasets and was superior to all 25 radiologists for liver tumor diagnosis.

摘要

医学图像分割和分类是计算机辅助临床诊断中最重要的两个步骤。通常需要以适当的方式对感兴趣区域进行分割,以提取用于进一步疾病分类的有用特征。然而,这些方法计算复杂且耗时。在本文中,我们提出了一种单阶段多任务注意力网络(MTANet),该网络可以在对图像中的对象进行高效分类的同时,为每个医学对象生成高质量的分割掩模。在分割任务中设计了一个反向添加注意力模块,用于融合全局图中的区域和高分辨率特征中的边界线索,在分类任务中使用注意力瓶颈模块进行图像特征和临床特征融合。我们使用基于 CNN 和基于 transformer 的架构在三个不同的成像模式下评估了 MTANet 的性能,用于不同的任务:CVC-ClinicDB 数据集用于息肉分割,ISIC-2018 数据集用于皮肤病变分割,以及我们的私人超声数据集用于肝脏肿瘤分割和分类。我们提出的模型在所有三个数据集上的性能均优于最先进的模型,并且在肝脏肿瘤诊断方面优于所有 25 位放射科医生。

相似文献

1
MTANet: Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification.
IEEE Trans Med Imaging. 2024 Feb;43(2):674-685. doi: 10.1109/TMI.2023.3317088. Epub 2024 Feb 2.
3
EPolar-UNet: An edge-attending polar UNet for automatic medical image segmentation with small datasets.
Med Phys. 2024 Mar;51(3):1702-1713. doi: 10.1002/mp.16957. Epub 2024 Feb 1.
4
MC-DC: An MLP-CNN Based Dual-path Complementary Network for Medical Image Segmentation.
Comput Methods Programs Biomed. 2023 Dec;242:107846. doi: 10.1016/j.cmpb.2023.107846. Epub 2023 Oct 5.
5
TGDAUNet: Transformer and GCNN based dual-branch attention UNet for medical image segmentation.
Comput Biol Med. 2023 Dec;167:107583. doi: 10.1016/j.compbiomed.2023.107583. Epub 2023 Oct 21.
6
Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification.
Comput Biol Med. 2023 Jan;152:106321. doi: 10.1016/j.compbiomed.2022.106321. Epub 2022 Nov 17.
7
Dual-feature Fusion Attention Network for Small Object Segmentation.
Comput Biol Med. 2023 Jun;160:106985. doi: 10.1016/j.compbiomed.2023.106985. Epub 2023 May 5.
8
DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation.
Comput Biol Med. 2022 Dec;151(Pt A):106304. doi: 10.1016/j.compbiomed.2022.106304. Epub 2022 Nov 9.
9
Transformer guided self-adaptive network for multi-scale skin lesion image segmentation.
Comput Biol Med. 2024 Feb;169:107846. doi: 10.1016/j.compbiomed.2023.107846. Epub 2023 Dec 23.
10
CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement.
Comput Biol Med. 2024 Apr;172:108265. doi: 10.1016/j.compbiomed.2024.108265. Epub 2024 Mar 7.

引用本文的文献

1
Image classification optimization technology based on differentiable neural architecture search improvement model.
PLoS One. 2025 Aug 13;20(8):e0329480. doi: 10.1371/journal.pone.0329480. eCollection 2025.
2
Precision Oral Medicine: A DPR Segmentation and Transfer Learning Approach for Detecting Third Molar Compress Inferior Alveolar Nerve.
IEEE J Transl Eng Health Med. 2025 May 12;13:286-298. doi: 10.1109/JTEHM.2025.3568922. eCollection 2025.
3
A Multitask Network for the Diagnosis of Autoimmune Gastritis.
J Imaging. 2025 May 15;11(5):154. doi: 10.3390/jimaging11050154.
4
Multi-Modal Graph Neural Networks for Colposcopy Data Classification and Visualization.
Cancers (Basel). 2025 Apr 30;17(9):1521. doi: 10.3390/cancers17091521.
5
Multi-attention Mechanism for Enhanced Pseudo-3D Prostate Zonal Segmentation.
J Imaging Inform Med. 2025 Feb 28. doi: 10.1007/s10278-025-01401-0.
6
MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation.
PeerJ Comput Sci. 2024 Dec 3;10:e2563. doi: 10.7717/peerj-cs.2563. eCollection 2024.
7
Development and validation of a deep learning pipeline to diagnose ovarian masses using ultrasound screening: a retrospective multicenter study.
EClinicalMedicine. 2024 Nov 19;78:102923. doi: 10.1016/j.eclinm.2024.102923. eCollection 2024 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验