Zhu Guanzhou, Liang Peng, Huang Cheng-Liang, Wu Shu-Chi, Huang Cheng-Chia, Li Yuan-Yao, Jiang Shi-Kai, Huang Wei-Hsiang, Li Jiachen, Wang Feifei, Hwang Bing-Joe, Dai Hongjie
Department of Chemistry and Bio-X, Stanford University, Stanford, CA 94305.
Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2310903120. doi: 10.1073/pnas.2310903120. Epub 2023 Sep 20.
Advancing new ideas of rechargeable batteries represents an important path to meeting the ever-increasing energy storage needs. Recently, we showed rechargeable sodium/chlorine (Na/Cl) (or lithium/chlorine Li/Cl) batteries that used a Na (or Li) metal negative electrode, a microporous amorphous carbon nanosphere (aCNS) positive electrode, and an electrolyte containing dissolved aluminum chloride and fluoride additives in thionyl chloride [G. Zhu , , 525-530 (2021) and G. Zhu , , 22505-22513 (2022)]. The main battery redox reaction involved conversion between NaCl and Cl trapped in the carbon positive electrode, delivering a cyclable capacity of up to 1,200 mAh g (based on positive electrode mass) at a ~3.5 V discharge voltage [G. Zhu , , 525-530 (2021) and G. Zhu , , 22505-22513 (2022)]. Here, we identified by X-ray photoelectron spectroscopy (XPS) that upon charging a Na/Cl battery, chlorination of carbon in the positive electrode occurred to form carbon-chlorine (C-Cl) accompanied by molecular Cl infiltrating the porous aCNS, consistent with Cl probed by mass spectrometry. Synchrotron X-ray diffraction observed the development of graphitic ordering in the initially amorphous aCNS under battery charging when the carbon matrix was oxidized/chlorinated and infiltrated with Cl. The C-Cl, Cl species and graphitic ordering were reversible upon discharge, accompanied by NaCl formation. The results revealed redox conversion between NaCl and Cl, reversible graphitic ordering/amorphourization of carbon through battery charge/discharge, and probed trapped Cl in porous carbon by XPS.
推进可充电电池的新想法是满足不断增长的储能需求的重要途径。最近,我们展示了可充电钠/氯(Na/Cl)(或锂/氯Li/Cl)电池,该电池使用钠(或锂)金属负极、微孔无定形碳纳米球(aCNS)正极以及在亚硫酰氯中含有溶解的氯化铝和氟化物添加剂的电解质[G. Zhu, ,525 - 530(2021年)和G. Zhu, ,22505 - 22513(2022年)]。电池的主要氧化还原反应涉及碳正极中捕获的NaCl和Cl之间的转化,在约3.5 V的放电电压下提供高达1200 mAh g(基于正极质量)的可循环容量[G. Zhu, ,525 - 530(2021年)和G. Zhu, ,22505 - 22513(2022年)]。在此,我们通过X射线光电子能谱(XPS)确定,在对Na/Cl电池充电时,正极中的碳发生氯化形成碳 - 氯(C - Cl),同时分子Cl渗透到多孔aCNS中,这与质谱探测到的Cl一致。同步加速器X射线衍射观察到,在电池充电时,当初始无定形的aCNS中的碳基质被氧化/氯化并被Cl渗透时,石墨有序性会发展。C - Cl、Cl物种和石墨有序性在放电时是可逆的,同时伴有NaCl的形成。这些结果揭示了NaCl和Cl之间的氧化还原转化、通过电池充放电实现的碳的可逆石墨有序化/非晶化,以及通过XPS探测多孔碳中捕获的Cl。