Suppr超能文献

机器学习模型预测肾移植后移植物排斥反应。

Machine Learning Model to Predict Graft Rejection After Kidney Transplantation.

机构信息

Department of Internal Medicine, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, Brazil.

Department of Internal Medicine, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, Brazil.

出版信息

Transplant Proc. 2023 Nov;55(9):2058-2062. doi: 10.1016/j.transproceed.2023.07.021. Epub 2023 Sep 18.

Abstract

BACKGROUND

There are few predictive studies about early posttransplant outcomes taking into account baseline and posttransplant variables. The objective of this study was to create a predictive model for 30-day graft rejection using machine learning techniques.

METHODS

Retrospective study with 1255 patients undergoing transplant from living and deceased donors at a tertiary health service in Brazil. Recipient, donor, transplantation, and postoperative period data were collected from physical and electronic records. We split the data into derivation (training) and validation (test) datasets. Five supervised machine learning algorithms were developed with this subset of variables in the training set: Simple Logistic Regression, Lasso, Multilayer Perceptron, XGBoost, and Light GBM.

RESULTS

There were 147 (12.48%) cases of graft rejection within 30 days of transplantation. The best model was XGBoost (accuracy, 0.839; receiver operating characteristic area under the curve, 0.715; precision, 0.900). The model showed that deceased donor transplantation, glomerulopathy as an underlying disease, and donor's use of vasoactive drugs had more than 20% importance as rejection risk factors. The variables with the greatest predictive values were thymoglobulin induction and delayed graft function.

CONCLUSIONS

We fitted a machine learning model to predict 30-day graft rejection after kidney transplantation that reaches a higher accuracy and precision. Machine learning models could contribute to predicting kidney survival using nontraditional approaches.

摘要

背景

考虑到基线和移植后变量,几乎没有关于早期移植后结果的预测性研究。本研究的目的是使用机器学习技术创建一个预测 30 天移植物排斥的模型。

方法

这是一项回顾性研究,共有 1255 名在巴西一家三级保健服务机构接受活体和已故供者移植的患者。从物理和电子病历中收集了受者、供者、移植和术后数据。我们将数据分为推导(训练)和验证(测试)数据集。在训练集中使用这组变量开发了五个有监督的机器学习算法:简单逻辑回归、套索、多层感知器、XGBoost 和轻量级梯度提升机。

结果

在移植后 30 天内有 147 例(12.48%)移植物排斥。最佳模型为 XGBoost(准确率为 0.839;接受者操作特征曲线下面积为 0.715;精度为 0.900)。该模型表明,已故供者移植、肾小球疾病作为基础疾病以及供者使用血管活性药物作为排斥的风险因素超过 20%。具有最大预测值的变量是胸腺球蛋白诱导和延迟移植物功能。

结论

我们拟合了一个机器学习模型来预测肾移植后 30 天的移植物排斥,该模型具有更高的准确性和精度。机器学习模型可以通过非传统方法来预测肾存活率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验