Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
Transpl Int. 2020 Nov;33(11):1472-1480. doi: 10.1111/tri.13695. Epub 2020 Jul 28.
An increasing number of studies claim machine learning (ML) predicts transplant outcomes more accurately. However, these claims were possibly confounded by other factors, namely, supplying new variables to ML models. To better understand the prospects of ML in transplantation, we compared ML to conventional regression in a "common" analytic task: predicting kidney transplant outcomes using national registry data. We studied 133 431 adult deceased-donor kidney transplant recipients between 2005 and 2017. Transplant centers were randomly divided into 70% training set (190 centers/97 787 recipients) and 30% validation set (82 centers/35 644 recipients). Using the training set, we performed regression and ML procedures [gradient boosting (GB) and random forests (RF)] to predict delayed graft function, one-year acute rejection, death-censored graft failure C, all-cause graft failure, and death. Their performances were compared on the validation set using -statistics. In predicting rejection, regression (C = 0.611 ) actually outperformed GB (C = 0.591 ) and RF (C = 0.579 ). For all other outcomes, the C-statistics were nearly identical across methods (delayed graft function, 0.717-0.723; death-censored graft failure, 0.637-0.642; all-cause graft failure, 0.633-0.635; and death, 0.705-0.708). Given its shortcomings in model interpretability and hypothesis testing, ML is advantageous only when it clearly outperforms conventional regression; in the case of transplant outcomes prediction, ML seems more hype than helpful.
越来越多的研究声称机器学习 (ML) 可以更准确地预测移植结果。然而,这些说法可能受到其他因素的影响,即向 ML 模型提供新变量。为了更好地理解 ML 在移植中的前景,我们将 ML 与传统回归在一项“常见”的分析任务中进行了比较:使用国家登记数据预测肾移植结果。我们研究了 2005 年至 2017 年间 133431 名成年尸体供肾移植受者。移植中心被随机分为 70%的训练集(190 个中心/97787 名受者)和 30%的验证集(82 个中心/35644 名受者)。使用训练集,我们进行了回归和 ML 程序[梯度提升 (GB) 和随机森林 (RF)],以预测延迟移植物功能障碍、一年急性排斥反应、死亡校正移植物失败 C、全因移植物失败和死亡。使用 -统计数据在验证集上比较它们的性能。在预测排斥反应方面,回归(C=0.611)实际上优于 GB(C=0.591)和 RF(C=0.579)。对于所有其他结果,方法之间的 C 统计数据几乎相同(延迟移植物功能障碍,0.717-0.723;死亡校正移植物失败,0.637-0.642;全因移植物失败,0.633-0.635;死亡,0.705-0.708)。由于其在模型可解释性和假设检验方面的缺陷,只有当 ML 明显优于传统回归时,ML 才具有优势;在移植结果预测方面,ML 似乎更多的是炒作,而不是帮助。
Transplant Proc. 2023-11
BMC Nephrol. 2017-1-11
JAMA Netw Open. 2020-1-3
J Neurol Surg B Skull Base. 2022-8-25
Transpl Int. 2022
Transplantation. 2019-7
J Invest Dermatol. 2018-10
Am J Transplant. 2018-1-27