Chemistry Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia.
Materials Science Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory, 1/73, Moscow, 119991, Russia.
Talanta. 2024 Jan 15;267:125219. doi: 10.1016/j.talanta.2023.125219. Epub 2023 Sep 16.
We report on the drop-cast production of glucose biosensors based on the most efficient bioelectrocatalysis by pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ GDH). To orient the enzyme upon immobilization we suggest using poly(Methylene Green) (p(MG)) nanoparticles acting as anchors. Synthesis of polymeric anchors has been carried out in course of Methylene Green electropolymerization, which allowed to tune polymer-to-monomer ratio in the drop-cast mixtures varying the monomer concentration and applying different number of potential sweep cycles. Except for elimination of electrochemical step for the electrode modification, opening the prospects for mass-production, the use of drop-cast enzyme anchors provides advantageous characteristics of the resulting biosensors. Catalytic current of PQQ GDH immobilized over p(MG) nanoparticles obtained in optimal conditions is increased only 2-2.5 times after addition of the freely diffusing mediator. Obviously, the lowest ratio of mediated-to-reagentless current points to the most efficient bioelectrocatalysis. The obtained ratio is 2.5 times lower than that for biosensors based on electropolymerized p(MG) films and practically an order of magnitude lower than that for the best reagentless sensors based on PQQ GDH immobilized over conductive nanomaterials. The achieved most efficient bioelectrocatalysis provides high sensitivity of the elaborated biosensors even at 0.0 V potential, which allows to operate them in power generation mode and control relative sweat glucose variation as a tool for non-invasive diabetes monitoring.
我们报告了基于吡咯喹啉醌依赖葡萄糖脱氢酶(PQQ GDH)最有效的生物电化学催化作用的葡萄糖生物传感器的滴铸生产。为了在固定化时定向酶,我们建议使用聚亚甲蓝(p(MG))纳米粒子作为锚。聚合锚的合成是在亚甲蓝电聚合过程中进行的,这允许通过改变单体浓度和施加不同数量的电位扫描循环来调整滴铸混合物中的聚合物与单体的比例。除了消除电极修饰的电化学步骤以实现大规模生产的前景外,使用滴铸酶锚还为所得生物传感器提供了有利的特性。在最佳条件下固定在 p(MG)纳米粒子上的 PQQ GDH 的催化电流在添加自由扩散介体后仅增加 2-2.5 倍。显然,介导电流与无试剂电流的最低比值表明生物电化学催化作用最高效。获得的比值比基于电聚合的 p(MG)薄膜的生物传感器低 2.5 倍,比基于固定在导电纳米材料上的 PQQ GDH 的最佳无试剂传感器低一个数量级。所实现的最高效生物电化学催化作用即使在 0.0 V 电位下也提供了所设计的生物传感器的高灵敏度,这允许它们以发电模式运行,并控制相对汗液葡萄糖的变化,作为非侵入性糖尿病监测的工具。