Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
Nat Methods. 2024 Jan;21(1):50-59. doi: 10.1038/s41592-023-01994-w. Epub 2023 Sep 21.
RNA velocity has been rapidly adopted to guide interpretation of transcriptional dynamics in snapshot single-cell data; however, current approaches for estimating RNA velocity lack effective strategies for quantifying uncertainty and determining the overall applicability to the system of interest. Here, we present veloVI (velocity variational inference), a deep generative modeling framework for estimating RNA velocity. veloVI learns a gene-specific dynamical model of RNA metabolism and provides a transcriptome-wide quantification of velocity uncertainty. We show that veloVI compares favorably to previous approaches with respect to goodness of fit, consistency across transcriptionally similar cells and stability across preprocessing pipelines for quantifying RNA abundance. Further, we demonstrate that veloVI's posterior velocity uncertainty can be used to assess whether velocity analysis is appropriate for a given dataset. Finally, we highlight veloVI as a flexible framework for modeling transcriptional dynamics by adapting the underlying dynamical model to use time-dependent transcription rates.
RNA 速度已被迅速采用来指导瞬时单细胞数据中转录动态的解释;然而,当前估计 RNA 速度的方法缺乏有效策略来量化不确定性,并确定对感兴趣系统的整体适用性。在这里,我们提出了 veloVI(速度变分推断),这是一种用于估计 RNA 速度的深度生成模型框架。veloVI 学习基因特异性的 RNA 代谢动态模型,并提供全转录组范围内的速度不确定性定量。我们表明,在拟合优度、转录相似细胞之间的一致性以及定量 RNA 丰度的预处理管道稳定性方面,veloVI 优于以前的方法。此外,我们证明 veloVI 的后验速度不确定性可用于评估速度分析是否适用于给定数据集。最后,我们通过将基础动态模型调整为使用时变转录率,突出了 veloVI 作为一种灵活的转录动态建模框架。