Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Chan-Zuckerberg Biohub, San Francisco, CA, USA.
J Mol Biol. 2022 Aug 15;434(15):167606. doi: 10.1016/j.jmb.2022.167606. Epub 2022 Apr 27.
Recent development in inferring RNA velocity from single-cell RNA-seq opens up exciting new vista into developmental lineage and cellular dynamics. However, the estimated velocity only gives a snapshot of how the transcriptome instantaneously changes in individual cells, and it does not provide quantitative predictions and insights about the whole system. In this work, we develop RNA-ODE, a principled computational framework that extends RNA velocity to quantify systems level dynamics and improve single-cell data analysis. We model the gene expression dynamics by an ordinary differential equation (ODE) based formalism. Given a snapshot of gene expression at one time, RNA-ODE is able to predict and extrapolate the expression trajectory of each cell by solving the dynamic equations. Systematic experiments on simulations and on new data from developing brain demonstrate that RNA-ODE substantially improves many aspects of standard single-cell analysis. By leveraging temporal dynamics, RNA-ODE more accurately estimates cell state lineage and pseudo-time compared to previous state-of-the-art methods. It also infers gene regulatory networks and identifies influential genes whose expression changes can decide cell fate. We expect RNA-ODE to be a Swiss army knife that aids many facets of single-cell RNA-seq analysis.
从单细胞 RNA-seq 推断 RNA 速度的最新进展为发育谱系和细胞动态研究开辟了令人兴奋的新视角。然而,估计的速度仅提供了个体细胞中转录组瞬间变化的快照,并不能提供关于整个系统的定量预测和见解。在这项工作中,我们开发了 RNA-ODE,这是一个原则性的计算框架,将 RNA 速度扩展到定量系统级动态,并改进单细胞数据分析。我们通过基于常微分方程 (ODE) 的形式来对基因表达动态进行建模。给定一个时间点的基因表达快照,RNA-ODE 通过求解动态方程,能够预测和推断每个细胞的表达轨迹。在模拟和发育大脑新数据上的系统实验表明,RNA-ODE 大大改善了标准单细胞分析的许多方面。通过利用时间动态,RNA-ODE 比以前的最先进方法更准确地估计细胞状态谱系和伪时间。它还推断基因调控网络,并识别表达变化可以决定细胞命运的有影响力的基因。我们期望 RNA-ODE 成为一把瑞士军刀,辅助单细胞 RNA-seq 分析的多个方面。