Suppr超能文献

神经退行性疾病与单细胞RNA测序研究的文献计量分析:机遇与挑战

Bibliometric analysis of research on neurodegenerative diseases and single-cell RNA sequencing: Opportunities and challenges.

作者信息

Wang Wei, Li Tianhua, Wang Zheng, Yin Yaxin, Zhang Sitao, Wang Chaodong, Hu Xinli, Lu Shibao

机构信息

Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.

National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.

出版信息

iScience. 2023 Sep 5;26(10):107833. doi: 10.1016/j.isci.2023.107833. eCollection 2023 Oct 20.

Abstract

Neurodegeneration, characterized by the progressive deterioration in neuronal structure or function, presents an elusive mechanism. The use of single-cell RNA sequencing (scRNA-seq) technology in the clinic is becoming increasingly prevalent in recent decades. This technology offers unparalleled cell-level insights into neurodegenerative diseases, establishing itself as a potent tool for elucidating these diseases underlying mechanisms. Here, we made a deep investigation for scRNA-seq research in neurodegenerative diseases using bibliometric analysis from 2009 to 2022. We observed a robust upward trajectory in the number of publications on this subject. The United States stood out as the principal contributor to this expanding field. Specifically, the University of California System exhibited notable research prowess in this field. Alzheimer disease and Parkinson disease were the diseases most frequently investigated. Key research hotspots include the creation of a molecular brain atlas and identification of vulnerable neuronal subpopulations and potential therapeutic targets at the transcriptomic level.

摘要

神经退行性变以神经元结构或功能的进行性恶化为特征,其机制难以捉摸。近几十年来,单细胞RNA测序(scRNA-seq)技术在临床上的应用越来越普遍。这项技术为神经退行性疾病提供了无与伦比的细胞水平见解,成为阐明这些疾病潜在机制的有力工具。在此,我们使用文献计量分析法对2009年至2022年期间神经退行性疾病的scRNA-seq研究进行了深入调查。我们观察到该主题的出版物数量呈强劲上升趋势。美国是这一不断扩展领域的主要贡献者。具体而言,加利福尼亚大学系统在该领域展现出显著的研究实力。阿尔茨海默病和帕金森病是研究最频繁的疾病。关键研究热点包括创建分子脑图谱以及在转录组水平上识别脆弱的神经元亚群和潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00f2/10509354/4822d55584d5/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验