Suppr超能文献

拓扑黑暗:如何设计一种用于超高灵敏度光学生物传感的超材料。

Topological Darkness: How to Design a Metamaterial for Optical Biosensing with Ultrahigh Sensitivity.

作者信息

Tselikov Gleb I, Danilov Artem, Shipunova Victoria O, Deyev Sergey M, Kabashin Andrei V, Grigorenko Alexander N

机构信息

Aix Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy-case 917, 13288 Marseille Cedex 9, France.

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, Moscow 117997, Russia.

出版信息

ACS Nano. 2023 Oct 10;17(19):19338-19348. doi: 10.1021/acsnano.3c06655. Epub 2023 Sep 22.

Abstract

Due to the absence of labels and fast analyses, optical biosensors promise major advances in biomedical diagnostics, security, environmental, and food safety applications. However, the sensitivity of the most advanced plasmonic biosensor implementations has a fundamental limitation caused by losses in the system and/or geometry of biochips. Here, we report a "scissor effect" in topologically dark metamaterials which is capable of providing ultrahigh-amplitude sensitivity to biosensing events, thus solving the bottleneck sensitivity limitation problem. We explain how the "scissor effect" can be realized via the proper design of topologically dark metamaterials and describe strategies for their fabrication. To validate the applicability of this effect in biosensing, we demonstrate the detection of folic acid (vitamin important for human health) in a wide 3-log linear dynamic range with a limit of detection of 0.22 nM, which is orders of magnitude better than those previously reported for all optical counterparts. Our work provides possibilities for designing and realizing plasmonic, semiconductor, and dielectric metamaterials with ultrasensitivity to binding events.

摘要

由于无需标记且分析速度快,光学生物传感器有望在生物医学诊断、安全、环境及食品安全应用方面取得重大进展。然而,最先进的等离子体生物传感器的灵敏度存在一个基本限制,这是由生物芯片系统和/或几何结构中的损耗所导致的。在此,我们报告了拓扑暗超材料中的一种“剪刀效应”,它能够为生物传感事件提供超高幅度的灵敏度,从而解决了灵敏度瓶颈限制问题。我们解释了如何通过拓扑暗超材料的合理设计来实现“剪刀效应”,并描述了其制造策略。为了验证这种效应在生物传感中的适用性,我们展示了在宽3个数量级的线性动态范围内对叶酸(对人体健康重要的维生素)的检测,检测限为0.22 nM,这比之前报道的所有光学同类产品的检测限要好几个数量级。我们的工作为设计和实现对结合事件具有超灵敏度的等离子体、半导体和介电超材料提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c6c/10569102/5fd48e1cc684/nn3c06655_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验