Suppr超能文献

DeepUMQA3:用于准确评估蛋白质复合物中界面残基准确性的网络服务器。

DeepUMQA3: a web server for accurate assessment of interface residue accuracy in protein complexes.

作者信息

Liu Jun, Liu Dong, Zhang Gui-Jun

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

出版信息

Bioinformatics. 2023 Oct 3;39(10). doi: 10.1093/bioinformatics/btad591.

Abstract

MOTIVATION

Model quality assessment is a crucial part of protein structure prediction and a gateway to proper usage of models in biomedical applications. Many methods have been proposed for assessing the quality of structural models of protein monomers, but few methods for evaluating protein complex models. As protein complex structure prediction becomes a new challenge, there is an urgent need for model quality assessment methods that can accurately assess the accuracy of interface residues of complex structures.

RESULTS

Here, we present DeepUMQA3, a web server for evaluating the accuracy of interface residues of protein complex structures using deep neural networks. For an input complex structure, features are extracted from three levels of overall complex, intra-monomer, and inter-monomer, and an improved deep residual neural network is used to predict per-residue lDDT and interface residue accuracy. DeepUMQA3 ranks first in the blind test of interface residue accuracy estimation in CASP15, with Pearson, Spearman, and AUC of 0.564, 0.535, and 0.755 under the lDDT measurement, which are 17.6%, 23.6%, and 10.9% higher than the second best method, respectively. DeepUMQA3 can also assess the accuracy of all residues in the entire complex and distinguish high- and low-precision residues.

AVAILABILITY AND IMPLEMENTATION

The web sever of DeepUMQA3 are freely available at http://zhanglab-bioinf.com/DeepUMQA_server/.

摘要

动机

模型质量评估是蛋白质结构预测的关键部分,也是在生物医学应用中正确使用模型的必经之路。已经提出了许多方法来评估蛋白质单体结构模型的质量,但评估蛋白质复合物模型的方法却很少。随着蛋白质复合物结构预测成为一项新的挑战,迫切需要能够准确评估复合物结构界面残基准确性的模型质量评估方法。

结果

在此,我们展示了DeepUMQA3,这是一个使用深度神经网络评估蛋白质复合物结构界面残基准确性的网络服务器。对于输入的复合物结构,从整体复合物、单体内部和单体间三个层面提取特征,并使用改进的深度残差神经网络来预测每个残基的lDDT和界面残基准确性。在CASP15的界面残基准确性估计盲测中,DeepUMQA3排名第一,在lDDT测量下,Pearson、Spearman和AUC分别为0.564、0.535和0.755,分别比次优方法高出17.6%、23.6%和10.9%。DeepUMQA3还可以评估整个复合物中所有残基的准确性,并区分高精度和低精度残基。

可用性和实现方式

DeepUMQA3的网络服务器可在http://zhanglab-bioinf.com/DeepUMQA_server/免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c06d/10560100/166e8048d308/btad591f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验