Suppr超能文献

评估基于图像的细胞分析中的批次校正方法。

Evaluating batch correction methods for image-based cell profiling.

作者信息

Arevalo John, Su Ellen, van Dijk Robert, Carpenter Anne E, Singh Shantanu

机构信息

Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

出版信息

bioRxiv. 2024 Feb 28:2023.09.15.558001. doi: 10.1101/2023.09.15.558001.

Abstract

High-throughput image-based profiling platforms are powerful technologies capable of collecting data from billions of cells exposed to thousands of perturbations in a time- and cost-effective manner. Therefore, image-based profiling data has been increasingly used for diverse biological applications, such as predicting drug mechanism of action or gene function. However, batch effects pose severe limitations to community-wide efforts to integrate and interpret image-based profiling data collected across different laboratories and equipment. To address this problem, we benchmarked seven high-performing scRNA-seq batch correction techniques, representing diverse approaches, using a newly released Cell Painting dataset, the largest publicly accessible image-based dataset. We focused on five different scenarios with varying complexity, and we found that Harmony, a mixture-model based method, consistently outperformed the other tested methods. Our proposed framework, benchmark, and metrics can additionally be used to assess new batch correction methods in the future. Overall, this work paves the way for improvements that allow the community to make best use of public Cell Painting data for scientific discovery.

摘要

基于图像的高通量分析平台是强大的技术,能够以经济高效的方式从数十亿个受到数千种干扰的细胞中收集数据。因此,基于图像的分析数据越来越多地用于各种生物学应用,例如预测药物作用机制或基因功能。然而,批次效应严重限制了社区范围内整合和解释跨不同实验室和设备收集的基于图像的分析数据的努力。为了解决这个问题,我们使用新发布的细胞绘画数据集(最大的可公开获取的基于图像的数据集)对代表不同方法的七种高性能单细胞RNA测序批次校正技术进行了基准测试。我们专注于五个不同复杂程度的场景,发现基于混合模型的方法Harmony始终优于其他测试方法。我们提出的框架、基准和指标还可用于未来评估新的批次校正方法。总体而言,这项工作为改进铺平了道路,使社区能够充分利用公共细胞绘画数据进行科学发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66fc/10913973/88825ace33eb/nihpp-2023.09.15.558001v3-f0001.jpg

相似文献

1
Evaluating batch correction methods for image-based cell profiling.
bioRxiv. 2024 Feb 28:2023.09.15.558001. doi: 10.1101/2023.09.15.558001.
2
Evaluating batch correction methods for image-based cell profiling.
Nat Commun. 2024 Aug 2;15(1):6516. doi: 10.1038/s41467-024-50613-5.
3
A Decade in a Systematic Review: The Evolution and Impact of Cell Painting.
bioRxiv. 2024 May 7:2024.05.04.592531. doi: 10.1101/2024.05.04.592531.
6
Morphological profiling for drug discovery in the era of deep learning.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae284.
8
deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors.
Front Genet. 2021 Aug 10;12:708981. doi: 10.3389/fgene.2021.708981. eCollection 2021.
9
A benchmark of batch-effect correction methods for single-cell RNA sequencing data.
Genome Biol. 2020 Jan 16;21(1):12. doi: 10.1186/s13059-019-1850-9.
10
Label-free prediction of cell painting from brightfield images.
Sci Rep. 2022 Jun 15;12(1):10001. doi: 10.1038/s41598-022-12914-x.

本文引用的文献

1
Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations.
Nat Methods. 2024 Jun;21(6):1114-1121. doi: 10.1038/s41592-024-02241-6. Epub 2024 Apr 9.
2
Learning representations for image-based profiling of perturbations.
Nat Commun. 2024 Feb 21;15(1):1594. doi: 10.1038/s41467-024-45999-1.
3
The specious art of single-cell genomics.
PLoS Comput Biol. 2023 Aug 17;19(8):e1011288. doi: 10.1371/journal.pcbi.1011288. eCollection 2023 Aug.
4
: a unifying computational framework for modular single-cell RNA-seq data integration.
NAR Genom Bioinform. 2023 Jul 12;5(3):lqad069. doi: 10.1093/nargab/lqad069. eCollection 2023 Sep.
5
Optimizing the Cell Painting assay for image-based profiling.
Nat Protoc. 2023 Jul;18(7):1981-2013. doi: 10.1038/s41596-023-00840-9. Epub 2023 Jun 21.
6
Deep learning in image-based phenotypic drug discovery.
Trends Cell Biol. 2023 Jul;33(7):538-554. doi: 10.1016/j.tcb.2022.11.011. Epub 2023 Jan 7.
7
Morphology and gene expression profiling provide complementary information for mapping cell state.
Cell Syst. 2022 Nov 16;13(11):911-923.e9. doi: 10.1016/j.cels.2022.10.001. Epub 2022 Oct 28.
8
High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations.
Nat Methods. 2022 Dec;19(12):1550-1557. doi: 10.1038/s41592-022-01667-0. Epub 2022 Nov 7.
9
Cell Painting predicts impact of lung cancer variants.
Mol Biol Cell. 2022 May 15;33(6):ar49. doi: 10.1091/mbc.E21-11-0538. Epub 2022 Mar 30.
10
New horizons in the stormy sea of multimodal single-cell data integration.
Mol Cell. 2022 Jan 20;82(2):248-259. doi: 10.1016/j.molcel.2021.12.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验