An Lin, Qin Jia, Jiang Weili, Luo Penghao, Luo Xiaoyan, Lai Yuzheng, Jin Mei
Guangdong Weiren Meditech Co., Ltd, Foshan, Guangdong, China.
Foshan Weizhi Meditech Co., Ltd, Foshan, Guangdong, China.
Front Neurol. 2023 Sep 7;14:1257388. doi: 10.3389/fneur.2023.1257388. eCollection 2023.
Cerebrovascular disease (CeVD) is a prominent contributor to global mortality and profound disability. Extensive research has unveiled a connection between CeVD and retinal microvascular abnormalities. Nonetheless, manual analysis of fundus images remains a laborious and time-consuming task. Consequently, our objective is to develop a risk prediction model that utilizes retinal fundus photo to noninvasively and accurately assess cerebrovascular risks.
To leverage retinal fundus photo for CeVD risk evaluation, we proposed a novel model called Efficient Attention which combines the convolutional neural network with attention mechanism. This combination aims to reinforce the salient features present in fundus photos, consequently improving the accuracy and effectiveness of cerebrovascular risk assessment.
Our proposed model demonstrates notable advancements compared to the conventional ResNet and Efficient-Net architectures. The accuracy (ACC) of our model is 0.834 ± 0.03, surpassing Efficient-Net by a margin of 3.6%. Additionally, our model exhibits an improved area under the receiver operating characteristic curve (AUC) of 0.904 ± 0.02, surpassing other methods by a margin of 2.2%.
This paper provides compelling evidence that Efficient-Attention methods can serve as effective and accurate tool for cerebrovascular risk. The results of the study strongly support the notion that retinal fundus photo holds great potential as a reliable predictor of CeVD, which offers a noninvasive, convenient and low-cost solution for large scale screening of CeVD.
脑血管疾病(CeVD)是全球死亡率和严重残疾的主要原因。广泛的研究揭示了CeVD与视网膜微血管异常之间的联系。尽管如此,眼底图像的人工分析仍然是一项艰巨且耗时的任务。因此,我们的目标是开发一种风险预测模型,利用视网膜眼底照片无创且准确地评估脑血管风险。
为了利用视网膜眼底照片进行CeVD风险评估,我们提出了一种名为高效注意力(Efficient Attention)的新型模型,该模型将卷积神经网络与注意力机制相结合。这种结合旨在强化眼底照片中存在的显著特征,从而提高脑血管风险评估的准确性和有效性。
与传统的ResNet和Efficient-Net架构相比,我们提出的模型有显著进步。我们模型的准确率(ACC)为0.834±0.03,比Efficient-Net高出3.6%。此外,我们的模型在受试者工作特征曲线下面积(AUC)方面有所改进,为0.904±0.02,比其他方法高出2.2%。
本文提供了有力证据,证明高效注意力方法可作为评估脑血管风险的有效且准确的工具。研究结果有力支持了视网膜眼底照片作为CeVD可靠预测指标具有巨大潜力的观点,这为CeVD的大规模筛查提供了一种无创、便捷且低成本的解决方案。