Parietal project-team, INRIA, Saclay-île de, France; CEA/Neurospin bât 145, 91191, Gif-Sur-Yvette, France.
Parietal project-team, INRIA, Saclay-île de, France; CEA/Neurospin bât 145, 91191, Gif-Sur-Yvette, France.
Neuroimage. 2018 Oct 15;180(Pt A):160-172. doi: 10.1016/j.neuroimage.2017.10.005. Epub 2017 Oct 10.
Brain decoding relates behavior to brain activity through predictive models. These are also used to identify brain regions involved in the cognitive operations related to the observed behavior. Training such multivariate models is a high-dimensional statistical problem that calls for suitable priors. State of the art priors -eg small total-variation- enforce spatial structure on the maps to stabilize them and improve prediction. However, they come with a hefty computational cost. We build upon very fast dimension reduction with spatial structure and model ensembling to achieve decoders that are fast on large datasets and increase the stability of the predictions and the maps. Our approach, fast regularized ensemble of models (FReM), includes an implicit spatial regularization by using a voxel grouping with a fast clustering algorithm. In addition, it aggregates different estimators obtained across splits of a cross-validation loop, each time keeping the best possible model. Experiments on a large number of brain imaging datasets show that our combination of voxel clustering and model ensembling improves decoding maps stability and reduces the variance of prediction accuracy. Importantly, our method requires less samples than state-of-the-art methods to achieve a given level of prediction accuracy. Finally, FreM is much faster than other spatially-regularized methods and, in addition, it can better exploit parallel computing resources.
脑解码通过预测模型将行为与大脑活动联系起来。这些模型也被用于识别与观察到的行为相关的认知操作所涉及的大脑区域。训练这种多元模型是一个高维统计问题,需要合适的先验。最先进的先验(例如,小的全变差)对图谱施加空间结构,以稳定它们并提高预测能力。然而,它们需要付出巨大的计算代价。我们在具有空间结构的快速降维和模型集成的基础上,构建了快速解码器,该解码器在大型数据集上速度很快,并提高了预测和图谱的稳定性。我们的方法,快速正则化模型集成(FReM),通过使用具有快速聚类算法的体素分组来实现隐含的空间正则化。此外,它聚合了交叉验证循环中不同划分获得的不同估计量,每次都保留最好的模型。在大量脑成像数据集上的实验表明,我们的体素聚类和模型集成的组合提高了解码图谱的稳定性,并降低了预测准确性的方差。重要的是,与最先进的方法相比,我们的方法需要更少的样本就能达到给定的预测精度水平。最后,FreM 比其他空间正则化方法快得多,此外,它还可以更好地利用并行计算资源。