Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
Nat Commun. 2023 Sep 26;14(1):5866. doi: 10.1038/s41467-023-41565-3.
Deep learning-based markerless tracking has revolutionized studies of animal behavior. Yet the generalizability of trained models tends to be limited, as new training data typically needs to be generated manually for each setup or visual environment. With each model trained from scratch, researchers track distinct landmarks and analyze the resulting kinematic data in idiosyncratic ways. Moreover, due to inherent limitations in manual annotation, only a sparse set of landmarks are typically labeled. To address these issues, we developed an approach, which we term GlowTrack, for generating orders of magnitude more training data, enabling models that generalize across experimental contexts. We describe: a) a high-throughput approach for producing hidden labels using fluorescent markers; b) a multi-camera, multi-light setup for simulating diverse visual conditions; and c) a technique for labeling many landmarks in parallel, enabling dense tracking. These advances lay a foundation for standardized behavioral pipelines and more complete scrutiny of movement.
基于深度学习的无标记跟踪技术已经彻底改变了动物行为研究。然而,训练模型的泛化能力往往受到限制,因为每个设置或视觉环境通常都需要手动生成新的训练数据。通过从 scratch 训练每个模型,研究人员会跟踪不同的标记点,并以特有的方式分析由此产生的运动学数据。此外,由于手动注释固有的局限性,通常只标记少数标记点。为了解决这些问题,我们开发了一种方法,我们称之为 GlowTrack,用于生成数量级更多的训练数据,从而实现跨实验环境的泛化模型。我们描述了:a)一种使用荧光标记物生成隐藏标签的高通量方法;b)一种用于模拟多种视觉条件的多相机、多光源设置;c)一种并行标记多个标记点的技术,实现密集跟踪。这些进展为标准化的行为管道和更全面的运动分析奠定了基础。