Suppr超能文献

使用弱相关定制特征和具有可解释人工智能的机器学习模型进行乳腺病变检测

Breast Lesion Detection Using Weakly Dependent Customized Features and Machine Learning Models with Explainable Artificial Intelligence.

作者信息

Moldovanu Simona, Munteanu Dan, Biswas Keka C, Moraru Luminita

机构信息

The Modelling & Simulation Laboratory, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania.

Department of Computer Science and Information Technology, Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania.

出版信息

J Imaging. 2025 Apr 28;11(5):135. doi: 10.3390/jimaging11050135.

Abstract

This research proposes a novel strategy for accurate breast lesion classification that combines explainable artificial intelligence (XAI), machine learning (ML) classifiers, and customized weakly dependent features from ultrasound (BU) images. Two new weakly dependent feature classes are proposed to improve the diagnostic accuracy and diversify the training data. These are based on image intensity variations and the area of bounded partitions and provide complementary rather than overlapping information. ML classifiers such as Random Forest (RF), Extreme Gradient Boosting (XGB), Gradient Boosting Classifiers (GBC), and LASSO regression were trained with both customized feature classes. To validate the reliability of our study and the results obtained, we conducted a statistical analysis using the McNemar test. Later, an XAI model was combined with ML to tackle the influence of certain features, the constraints of feature selection, and the interpretability capabilities across various ML models. LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive exPlanations) models were used in the XAI process to enhance the transparency and interpretation in clinical decision-making. The results revealed common relevant features for the malignant class, consistently identified by all of the classifiers, and for the benign class. However, we observed variations in the feature importance rankings across the different classifiers. Furthermore, our study demonstrates that the correlation between dependent features does not impact explainability.

摘要

本研究提出了一种用于准确乳腺病变分类的新策略,该策略结合了可解释人工智能(XAI)、机器学习(ML)分类器以及来自超声(BU)图像的定制弱相关特征。提出了两种新的弱相关特征类别,以提高诊断准确性并使训练数据多样化。这些基于图像强度变化和有界分区的面积,提供互补而非重叠的信息。使用这两种定制特征类别对随机森林(RF)、极端梯度提升(XGB)、梯度提升分类器(GBC)和套索回归等ML分类器进行了训练。为了验证我们研究的可靠性以及所获得的结果,我们使用McNemar检验进行了统计分析。后来,将一个XAI模型与ML相结合,以应对某些特征的影响、特征选择的限制以及各种ML模型之间的可解释性能力。在XAI过程中使用了LIME(局部可解释模型无关解释)和SHAP(SHapley加性解释)模型,以提高临床决策中的透明度和可解释性。结果揭示了所有分类器一致识别出的恶性类别和良性类别的常见相关特征。然而,我们观察到不同分类器之间特征重要性排名存在差异。此外,我们的研究表明相关特征之间的相关性不会影响可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3742/12112174/c052db4be8f2/jimaging-11-00135-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验