文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

混合特征乳腺钼靶分析:结合Gabor、Prewitt、灰度共生矩阵特征以及经卷积神经网络架构增强的顶帽滤波来检测和定位微钙化

Hybrid Feature Mammogram Analysis: Detecting and Localizing Microcalcifications Combining Gabor, Prewitt, GLCM Features, and Top Hat Filtering Enhanced with CNN Architecture.

作者信息

Hernández-Vázquez Miguel Alejandro, Hernández-Rodríguez Yazmín Mariela, Cortes-Rojas Fausto David, Bayareh-Mancilla Rafael, Cigarroa-Mayorga Oscar Eduardo

机构信息

Departamento de Tecnologías Avanzadas, UPIITA-Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2580, Ciudad de México 07340, Mexico.

Departamento de Ingeniería Eléctrica/Sección de Bioelectrónica, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.

出版信息

Diagnostics (Basel). 2024 Aug 5;14(15):1691. doi: 10.3390/diagnostics14151691.


DOI:10.3390/diagnostics14151691
PMID:39125567
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11311263/
Abstract

Breast cancer is a prevalent malignancy characterized by the uncontrolled growth of glandular epithelial cells, which can metastasize through the blood and lymphatic systems. Microcalcifications, small calcium deposits within breast tissue, are critical markers for early detection of breast cancer, especially in non-palpable carcinomas. These microcalcifications, appearing as small white spots on mammograms, are challenging to identify due to potential confusion with other tissues. This study hypothesizes that a hybrid feature extraction approach combined with Convolutional Neural Networks (CNNs) can significantly enhance the detection and localization of microcalcifications in mammograms. The proposed algorithm employs Gabor, Prewitt, and Gray Level Co-occurrence Matrix (GLCM) kernels for feature extraction. These features are input to a CNN architecture designed with maxpooling layers, Rectified Linear Unit (ReLU) activation functions, and a sigmoid response for binary classification. Additionally, the Top Hat filter is used for precise localization of microcalcifications. The preprocessing stage includes enhancing contrast using the Volume of Interest Look-Up Table (VOI LUT) technique and segmenting regions of interest. The CNN architecture comprises three convolutional layers, three ReLU layers, and three maxpooling layers. The training was conducted using a balanced dataset of digital mammograms, with the Adam optimizer and binary cross-entropy loss function. Our method achieved an accuracy of 89.56%, a sensitivity of 82.14%, and a specificity of 91.47%, outperforming related works, which typically report accuracies around 85-87% and sensitivities between 76 and 81%. These results underscore the potential of combining traditional feature extraction techniques with deep learning models to improve the detection and localization of microcalcifications. This system may serve as an auxiliary tool for radiologists, enhancing early detection capabilities and potentially reducing diagnostic errors in mass screening programs.

摘要

乳腺癌是一种常见的恶性肿瘤,其特征是腺上皮细胞不受控制地生长,并可通过血液和淋巴系统转移。微钙化是乳腺组织内的小钙沉积物,是早期检测乳腺癌的关键标志物,尤其是在不可触及的癌中。这些微钙化在乳房X光片上表现为小白点,由于可能与其他组织混淆,因此难以识别。本研究假设,结合卷积神经网络(CNN)的混合特征提取方法可以显著提高乳房X光片中微钙化的检测和定位。所提出的算法采用Gabor、Prewitt和灰度共生矩阵(GLCM)内核进行特征提取。这些特征被输入到一个CNN架构中,该架构设计有最大池化层、修正线性单元(ReLU)激活函数和用于二分类的 sigmoid 响应。此外,顶帽滤波器用于微钙化的精确定位。预处理阶段包括使用感兴趣体积查找表(VOI LUT)技术增强对比度和分割感兴趣区域。CNN架构包括三个卷积层、三个ReLU层和三个最大池化层。使用数字乳房X光片的平衡数据集进行训练,采用Adam优化器和二元交叉熵损失函数。我们的方法实现了89.56%的准确率、82.14%的灵敏度和91.47%的特异性,优于相关工作,相关工作通常报告的准确率约为85-87%,灵敏度在76%至81%之间。这些结果强调了将传统特征提取技术与深度学习模型相结合以改善微钙化检测和定位的潜力。该系统可作为放射科医生的辅助工具,增强早期检测能力,并有可能减少大规模筛查计划中的诊断错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/15e87e787616/diagnostics-14-01691-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/11e9fd912321/diagnostics-14-01691-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/917748e428cc/diagnostics-14-01691-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/5d196804b694/diagnostics-14-01691-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/39f4ccbb33eb/diagnostics-14-01691-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/98ff5c138b9b/diagnostics-14-01691-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/e2baf0147a11/diagnostics-14-01691-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/20fe6a547a56/diagnostics-14-01691-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/18853da170b1/diagnostics-14-01691-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/953b18efb9e0/diagnostics-14-01691-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/15e87e787616/diagnostics-14-01691-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/11e9fd912321/diagnostics-14-01691-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/917748e428cc/diagnostics-14-01691-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/5d196804b694/diagnostics-14-01691-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/39f4ccbb33eb/diagnostics-14-01691-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/98ff5c138b9b/diagnostics-14-01691-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/e2baf0147a11/diagnostics-14-01691-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/20fe6a547a56/diagnostics-14-01691-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/18853da170b1/diagnostics-14-01691-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/953b18efb9e0/diagnostics-14-01691-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c2/11311263/15e87e787616/diagnostics-14-01691-g010.jpg

相似文献

[1]
Hybrid Feature Mammogram Analysis: Detecting and Localizing Microcalcifications Combining Gabor, Prewitt, GLCM Features, and Top Hat Filtering Enhanced with CNN Architecture.

Diagnostics (Basel). 2024-8-5

[2]
Breast microcalcifications detection based on fusing features with DTCWT.

J Xray Sci Technol. 2020

[3]
Breast Cancer Detection and Analytics Using Hybrid CNN and Extreme Learning Machine.

J Pers Med. 2024-7-26

[4]
Deep Learning Capabilities for the Categorization of Microcalcification.

Int J Environ Res Public Health. 2022-2-14

[5]
Deep learning performance for detection and classification of microcalcifications on mammography.

Eur Radiol Exp. 2023-11-7

[6]
Development and integration of VGG and dense transfer-learning systems supported with diverse lung images for discovery of the Coronavirus identity.

Inform Med Unlocked. 2022

[7]
Self-Trained Convolutional Neural Network (CNN) for Tuberculosis Diagnosis in Medical Imaging.

Cureus. 2024-6-28

[8]
Computer aided detection of clusters of microcalcifications on full field digital mammograms.

Med Phys. 2006-8

[9]
Colon Cancer Disease Diagnosis Based on Convolutional Neural Network and Fishier Mantis Optimizer.

Diagnostics (Basel). 2024-7-2

[10]
Segmentation for the enhancement of microcalcifications in digital mammograms.

Technol Health Care. 2014

引用本文的文献

[1]
Artificial Intelligence and Cancer Health Equity: Bridging the Divide or Widening the Gap.

Curr Oncol Rep. 2025-2

[2]
Cardiovascular Disease Risk Stratification Using Hybrid Deep Learning Paradigm: First of Its Kind on Canadian Trial Data.

Diagnostics (Basel). 2024-8-28

本文引用的文献

[1]
ESR Essentials: screening for breast cancer - general recommendations by EUSOBI.

Eur Radiol. 2024-10

[2]
Breast Density: Current Knowledge, Assessment Methods, and Clinical Implications.

J Breast Imaging. 2022-7-29

[3]
A single-institution retrospective evaluation of noninvasive localization for non-palpable breast microcalcification.

Asian J Surg. 2024-4

[4]
Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification.

J Imaging. 2023-8-30

[5]
VinDr-Mammo: A large-scale benchmark dataset for computer-aided diagnosis in full-field digital mammography.

Sci Data. 2023-5-12

[6]
Computer Aided COVID-19 Diagnosis in Pandemic Era Using CNN in Chest X-ray Images.

Life (Basel). 2022-10-26

[7]
Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI).

Eur Radiol. 2022-6

[8]
Deep Learning Capabilities for the Categorization of Microcalcification.

Int J Environ Res Public Health. 2022-2-14

[9]
The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers.

Eur J Cancer. 2021-11

[10]
Classification of microcalcification clusters in digital breast tomosynthesis using ensemble convolutional neural network.

Biomed Eng Online. 2021-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索