Hernández-Vázquez Miguel Alejandro, Hernández-Rodríguez Yazmín Mariela, Cortes-Rojas Fausto David, Bayareh-Mancilla Rafael, Cigarroa-Mayorga Oscar Eduardo
Departamento de Tecnologías Avanzadas, UPIITA-Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2580, Ciudad de México 07340, Mexico.
Departamento de Ingeniería Eléctrica/Sección de Bioelectrónica, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
Diagnostics (Basel). 2024 Aug 5;14(15):1691. doi: 10.3390/diagnostics14151691.
Breast cancer is a prevalent malignancy characterized by the uncontrolled growth of glandular epithelial cells, which can metastasize through the blood and lymphatic systems. Microcalcifications, small calcium deposits within breast tissue, are critical markers for early detection of breast cancer, especially in non-palpable carcinomas. These microcalcifications, appearing as small white spots on mammograms, are challenging to identify due to potential confusion with other tissues. This study hypothesizes that a hybrid feature extraction approach combined with Convolutional Neural Networks (CNNs) can significantly enhance the detection and localization of microcalcifications in mammograms. The proposed algorithm employs Gabor, Prewitt, and Gray Level Co-occurrence Matrix (GLCM) kernels for feature extraction. These features are input to a CNN architecture designed with maxpooling layers, Rectified Linear Unit (ReLU) activation functions, and a sigmoid response for binary classification. Additionally, the Top Hat filter is used for precise localization of microcalcifications. The preprocessing stage includes enhancing contrast using the Volume of Interest Look-Up Table (VOI LUT) technique and segmenting regions of interest. The CNN architecture comprises three convolutional layers, three ReLU layers, and three maxpooling layers. The training was conducted using a balanced dataset of digital mammograms, with the Adam optimizer and binary cross-entropy loss function. Our method achieved an accuracy of 89.56%, a sensitivity of 82.14%, and a specificity of 91.47%, outperforming related works, which typically report accuracies around 85-87% and sensitivities between 76 and 81%. These results underscore the potential of combining traditional feature extraction techniques with deep learning models to improve the detection and localization of microcalcifications. This system may serve as an auxiliary tool for radiologists, enhancing early detection capabilities and potentially reducing diagnostic errors in mass screening programs.
乳腺癌是一种常见的恶性肿瘤,其特征是腺上皮细胞不受控制地生长,并可通过血液和淋巴系统转移。微钙化是乳腺组织内的小钙沉积物,是早期检测乳腺癌的关键标志物,尤其是在不可触及的癌中。这些微钙化在乳房X光片上表现为小白点,由于可能与其他组织混淆,因此难以识别。本研究假设,结合卷积神经网络(CNN)的混合特征提取方法可以显著提高乳房X光片中微钙化的检测和定位。所提出的算法采用Gabor、Prewitt和灰度共生矩阵(GLCM)内核进行特征提取。这些特征被输入到一个CNN架构中,该架构设计有最大池化层、修正线性单元(ReLU)激活函数和用于二分类的 sigmoid 响应。此外,顶帽滤波器用于微钙化的精确定位。预处理阶段包括使用感兴趣体积查找表(VOI LUT)技术增强对比度和分割感兴趣区域。CNN架构包括三个卷积层、三个ReLU层和三个最大池化层。使用数字乳房X光片的平衡数据集进行训练,采用Adam优化器和二元交叉熵损失函数。我们的方法实现了89.56%的准确率、82.14%的灵敏度和91.47%的特异性,优于相关工作,相关工作通常报告的准确率约为85-87%,灵敏度在76%至81%之间。这些结果强调了将传统特征提取技术与深度学习模型相结合以改善微钙化检测和定位的潜力。该系统可作为放射科医生的辅助工具,增强早期检测能力,并有可能减少大规模筛查计划中的诊断错误。
J Xray Sci Technol. 2020
J Pers Med. 2024-7-26
Int J Environ Res Public Health. 2022-2-14
Eur Radiol Exp. 2023-11-7
Diagnostics (Basel). 2024-7-2
Technol Health Care. 2014
J Breast Imaging. 2022-7-29
Life (Basel). 2022-10-26
Int J Environ Res Public Health. 2022-2-14