Suppr超能文献

利用从局部到全局脑区的分层时空脑电图信息进行情绪识别。

Emotion Recognition Using Hierarchical Spatiotemporal Electroencephalogram Information from Local to Global Brain Regions.

作者信息

Jeong Dong-Ki, Kim Hyoung-Gook, Kim Jin-Young

机构信息

Department of Electronic Convergence Engineering, Kwangwoon University, 20 Gwangun-ro, Nowon-gu, Seoul 01897, Republic of Korea.

Department of ICT Convergence System Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.

出版信息

Bioengineering (Basel). 2023 Sep 4;10(9):1040. doi: 10.3390/bioengineering10091040.

Abstract

To understand human emotional states, local activities in various regions of the cerebral cortex and the interactions among different brain regions must be considered. This paper proposes a hierarchical emotional context feature learning model that improves multichannel electroencephalography (EEG)-based emotion recognition by learning spatiotemporal EEG features from a local brain region to a global brain region. The proposed method comprises a regional brain-level encoding module, a global brain-level encoding module, and a classifier. First, multichannel EEG signals grouped into nine regions based on the functional role of the brain are input into a regional brain-level encoding module to learn local spatiotemporal information. Subsequently, the global brain-level encoding module improved emotional classification performance by integrating local spatiotemporal information from various brain regions to learn the global context features of brain regions related to emotions. Next, we applied a two-layer bidirectional gated recurrent unit (BGRU) with self-attention to the regional brain-level module and a one-layer BGRU with self-attention to the global brain-level module. Experiments were conducted using three datasets to evaluate the EEG-based emotion recognition performance of the proposed method. The results proved that the proposed method achieves superior performance by reflecting the characteristics of multichannel EEG signals better than state-of-the-art methods.

摘要

为了理解人类的情绪状态,必须考虑大脑皮层各个区域的局部活动以及不同脑区之间的相互作用。本文提出了一种分层情感上下文特征学习模型,该模型通过从局部脑区到全局脑区学习时空脑电图(EEG)特征来改进基于多通道脑电图的情感识别。所提出的方法包括一个区域脑级编码模块、一个全局脑级编码模块和一个分类器。首先,根据大脑的功能作用将多通道EEG信号分为九个区域,输入到区域脑级编码模块中学习局部时空信息。随后,全局脑级编码模块通过整合来自各个脑区的局部时空信息来学习与情绪相关的脑区的全局上下文特征,从而提高了情感分类性能。接下来,我们将带有自注意力机制的两层双向门控循环单元(BGRU)应用于区域脑级模块,将带有自注意力机制的一层BGRU应用于全局脑级模块。使用三个数据集进行实验,以评估所提出方法基于EEG的情感识别性能。结果证明,所提出的方法通过比现有方法更好地反映多通道EEG信号的特征,实现了卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a9/10525488/1654d5864159/bioengineering-10-01040-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验