Suppr超能文献

使用机器深度学习模型从脑电图信号中进行情绪检测。

Emotion Detection from EEG Signals Using Machine Deep Learning Models.

作者信息

Fernandes João Vitor Marques Rabelo, Alexandria Auzuir Ripardo de, Marques João Alexandre Lobo, Assis Débora Ferreira de, Motta Pedro Crosara, Silva Bruno Riccelli Dos Santos

机构信息

Programa de Pós-Graduação em Engenharia de Telecomunicações, Instituto Federal do Ceará (IFCE), Fortaleza 60040-215, Brazil.

Laboratory of Applied Neurosciences (LAN), University of Saint Joseph, Saint Joseph 999078, Macau.

出版信息

Bioengineering (Basel). 2024 Aug 2;11(8):782. doi: 10.3390/bioengineering11080782.

Abstract

Detecting emotions is a growing field aiming to comprehend and interpret human emotions from various data sources, including text, voice, and physiological signals. Electroencephalogram (EEG) is a unique and promising approach among these sources. EEG is a non-invasive monitoring technique that records the brain's electrical activity through electrodes placed on the scalp's surface. It is used in clinical and research contexts to explore how the human brain responds to emotions and cognitive stimuli. Recently, its use has gained interest in real-time emotion detection, offering a direct approach independent of facial expressions or voice. This is particularly useful in resource-limited scenarios, such as brain-computer interfaces supporting mental health. The objective of this work is to evaluate the classification of emotions (positive, negative, and neutral) in EEG signals using machine learning and deep learning, focusing on Graph Convolutional Neural Networks (GCNN), based on the analysis of critical attributes of the EEG signal (Differential Entropy (DE), Power Spectral Density (PSD), Differential Asymmetry (DASM), Rational Asymmetry (RASM), Asymmetry (ASM), Differential Causality (DCAU)). The electroencephalography dataset used in the research was the public SEED dataset (SJTU Emotion EEG Dataset), obtained through auditory and visual stimuli in segments from Chinese emotional movies. The experiment employed to evaluate the model results was "subject-dependent". In this method, the Deep Neural Network (DNN) achieved an accuracy of 86.08%, surpassing SVM, albeit with significant processing time due to the optimization characteristics inherent to the algorithm. The GCNN algorithm achieved an average accuracy of 89.97% in the subject-dependent experiment. This work contributes to emotion detection in EEG, emphasizing the effectiveness of different models and underscoring the importance of selecting appropriate features and the ethical use of these technologies in practical applications. The GCNN emerges as the most promising methodology for future research.

摘要

情感检测是一个不断发展的领域,旨在从包括文本、语音和生理信号在内的各种数据源中理解和解释人类情感。脑电图(EEG)是这些数据源中一种独特且有前景的方法。EEG是一种非侵入性监测技术,通过放置在头皮表面的电极记录大脑的电活动。它用于临床和研究环境,以探索人类大脑如何对情感和认知刺激做出反应。最近,它在实时情感检测中受到关注,提供了一种独立于面部表情或语音的直接方法。这在资源有限的场景中特别有用,例如支持心理健康的脑机接口。这项工作的目的是使用机器学习和深度学习,基于对EEG信号的关键属性(微分熵(DE)、功率谱密度(PSD)、微分不对称性(DASM)、理性不对称性(RASM)、不对称性(ASM)、微分因果关系(DCAU))的分析,评估EEG信号中情感(积极、消极和中性)的分类。研究中使用的脑电图数据集是公开的SEED数据集(上海交通大学情感脑电图数据集),通过中国情感电影片段中的听觉和视觉刺激获得。用于评估模型结果的实验是“受试者依赖”的。在这种方法中,深度神经网络(DNN)的准确率达到了86.08%,超过了支持向量机(SVM),尽管由于算法固有的优化特性,处理时间较长。GCNN算法在受试者依赖实验中的平均准确率达到了89.97%。这项工作有助于EEG中的情感检测,强调了不同模型的有效性,并强调了在实际应用中选择合适特征以及合理使用这些技术的重要性。GCNN成为未来研究最有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d228/11351761/76eafea937c7/bioengineering-11-00782-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验