Suppr超能文献

定向突变和交叉增强蚁群优化及其在 COVID-19 X 射线图像分割中的应用。

Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation.

机构信息

College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.

College of Computer Science and Technology, Beihua University, Jilin, Jilin, 132013, China.

出版信息

Comput Biol Med. 2022 Sep;148:105810. doi: 10.1016/j.compbiomed.2022.105810. Epub 2022 Jul 13.

Abstract

This paper focuses on the study of Coronavirus Disease 2019 (COVID-19) X-ray image segmentation technology. We present a new multilevel image segmentation method based on the swarm intelligence algorithm (SIA) to enhance the image segmentation of COVID-19 X-rays. This paper first introduces an improved ant colony optimization algorithm, and later details the directional crossover (DX) and directional mutation (DM) strategy, XMACO. The DX strategy improves the quality of the population search, which enhances the convergence speed of the algorithm. The DM strategy increases the diversity of the population to jump out of the local optima (LO). Furthermore, we design the image segmentation model (MIS-XMACO) by incorporating two-dimensional (2D) histograms, 2D Kapur's entropy, and a nonlocal mean strategy, and we apply this model to COVID-19 X-ray image segmentation. Benchmark function experiments based on the IEEE CEC2014 and IEEE CEC2017 function sets demonstrate that XMACO has a faster convergence speed and higher convergence accuracy than competing models, and it can avoid falling into LO. Other SIAs and image segmentation models were used to ensure the validity of the experiments. The proposed MIS-XMACO model shows more stable and superior segmentation results than other models at different threshold levels by analyzing the experimental results.

摘要

本文专注于研究 2019 年冠状病毒病(COVID-19)X 射线图像分割技术。我们提出了一种新的基于群体智能算法(SIA)的多层次图像分割方法,以增强 COVID-19 X 射线的图像分割。本文首先介绍了一种改进的蚁群优化算法,随后详细介绍了定向交叉(DX)和定向变异(DM)策略 XMACO。DX 策略提高了种群搜索的质量,从而加快了算法的收敛速度。DM 策略增加了种群的多样性,以跳出局部最优解(LO)。此外,我们通过结合二维(2D)直方图、2D Kapur 熵和非局部均值策略,设计了图像分割模型(MIS-XMACO),并将其应用于 COVID-19 X 射线图像分割。基于 IEEE CEC2014 和 IEEE CEC2017 函数集的基准函数实验表明,与竞争模型相比,XMACO 具有更快的收敛速度和更高的收敛精度,并且可以避免陷入 LO。还使用了其他 SIA 和图像分割模型来确保实验的有效性。通过分析实验结果,所提出的 MIS-XMACO 模型在不同的阈值水平下显示出比其他模型更稳定和优越的分割结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/b420081784b7/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验