文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定向突变和交叉增强蚁群优化及其在 COVID-19 X 射线图像分割中的应用。

Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation.

机构信息

College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.

College of Computer Science and Technology, Beihua University, Jilin, Jilin, 132013, China.

出版信息

Comput Biol Med. 2022 Sep;148:105810. doi: 10.1016/j.compbiomed.2022.105810. Epub 2022 Jul 13.


DOI:10.1016/j.compbiomed.2022.105810
PMID:35868049
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9278012/
Abstract

This paper focuses on the study of Coronavirus Disease 2019 (COVID-19) X-ray image segmentation technology. We present a new multilevel image segmentation method based on the swarm intelligence algorithm (SIA) to enhance the image segmentation of COVID-19 X-rays. This paper first introduces an improved ant colony optimization algorithm, and later details the directional crossover (DX) and directional mutation (DM) strategy, XMACO. The DX strategy improves the quality of the population search, which enhances the convergence speed of the algorithm. The DM strategy increases the diversity of the population to jump out of the local optima (LO). Furthermore, we design the image segmentation model (MIS-XMACO) by incorporating two-dimensional (2D) histograms, 2D Kapur's entropy, and a nonlocal mean strategy, and we apply this model to COVID-19 X-ray image segmentation. Benchmark function experiments based on the IEEE CEC2014 and IEEE CEC2017 function sets demonstrate that XMACO has a faster convergence speed and higher convergence accuracy than competing models, and it can avoid falling into LO. Other SIAs and image segmentation models were used to ensure the validity of the experiments. The proposed MIS-XMACO model shows more stable and superior segmentation results than other models at different threshold levels by analyzing the experimental results.

摘要

本文专注于研究 2019 年冠状病毒病(COVID-19)X 射线图像分割技术。我们提出了一种新的基于群体智能算法(SIA)的多层次图像分割方法,以增强 COVID-19 X 射线的图像分割。本文首先介绍了一种改进的蚁群优化算法,随后详细介绍了定向交叉(DX)和定向变异(DM)策略 XMACO。DX 策略提高了种群搜索的质量,从而加快了算法的收敛速度。DM 策略增加了种群的多样性,以跳出局部最优解(LO)。此外,我们通过结合二维(2D)直方图、2D Kapur 熵和非局部均值策略,设计了图像分割模型(MIS-XMACO),并将其应用于 COVID-19 X 射线图像分割。基于 IEEE CEC2014 和 IEEE CEC2017 函数集的基准函数实验表明,与竞争模型相比,XMACO 具有更快的收敛速度和更高的收敛精度,并且可以避免陷入 LO。还使用了其他 SIA 和图像分割模型来确保实验的有效性。通过分析实验结果,所提出的 MIS-XMACO 模型在不同的阈值水平下显示出比其他模型更稳定和优越的分割结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/66365e83d7d3/gr14_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/b420081784b7/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/62137580616f/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/6caea7d212f6/fx2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/79b7d283c1ce/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/105154f47fbc/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/41c4c7c6035c/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/8c300ff14279/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/3e25cf5b9933/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/822211e3795c/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/3ad573166fdc/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/4307cb9f556a/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/4dc01d8b93df/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/4afecef89855/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/72ea91044588/gr12_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/6617d1c1b574/gr13_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/66365e83d7d3/gr14_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/b420081784b7/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/62137580616f/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/6caea7d212f6/fx2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/79b7d283c1ce/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/105154f47fbc/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/41c4c7c6035c/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/8c300ff14279/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/3e25cf5b9933/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/822211e3795c/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/3ad573166fdc/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/4307cb9f556a/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/4dc01d8b93df/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/4afecef89855/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/72ea91044588/gr12_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/6617d1c1b574/gr13_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94e/9278012/66365e83d7d3/gr14_lrg.jpg

相似文献

[1]
Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation.

Comput Biol Med. 2022-9

[2]
Ant colony optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray image segmentation.

Comput Biol Med. 2021-9

[3]
An enhanced ant colony optimizer with Cauchy-Gaussian fusion and novel movement strategy for multi-threshold COVID-19 X-ray image segmentation.

Front Neuroinform. 2023-3-17

[4]
Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images.

Comput Biol Med. 2024-1

[5]
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images.

Comput Biol Med. 2024-2

[6]
Multi-threshold image segmentation for melanoma based on Kapur's entropy using enhanced ant colony optimization.

Front Neuroinform. 2022-11-1

[7]
An improved RIME optimization algorithm for lung cancer image segmentation.

Comput Biol Med. 2024-5

[8]
Gaussian Barebone Salp Swarm Algorithm with Stochastic Fractal Search for medical image segmentation: A COVID-19 case study.

Comput Biol Med. 2021-12

[9]
Multi-verse Optimizer with Rosenbrock and Diffusion Mechanisms for Multilevel Threshold Image Segmentation from COVID-19 Chest X-Ray Images.

J Bionic Eng. 2023

[10]
Symmetric cross-entropy multi-threshold color image segmentation based on improved pelican optimization algorithm.

PLoS One. 2023

引用本文的文献

[1]
Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification.

Health Inf Sci Syst. 2024-12-28

[2]
A novel multi-objective dung beetle optimizer for Multi-UAV cooperative path planning.

Heliyon. 2024-9-4

[3]
A multi-institutional machine learning algorithm for prognosticating facial nerve injury following microsurgical resection of vestibular schwannoma.

Sci Rep. 2024-6-5

[4]
Improving inceptionV4 model based on fractional-order snow leopard optimization algorithm for diagnosing of ACL tears.

Sci Rep. 2024-4-29

[5]
Design and optimization of haze prediction model based on particle swarm optimization algorithm and graphics processor.

Sci Rep. 2024-4-26

[6]
Effective Invasiveness Recognition of Imbalanced Data by Semi-Automated Segmentations of Lung Nodules.

Biomedicines. 2023-10-30

[7]
An Enhanced RIME Optimizer with Horizontal and Vertical Crossover for Discriminating Microseismic and Blasting Signals in Deep Mines.

Sensors (Basel). 2023-10-28

[8]
Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images.

Comput Biol Med. 2023-12

[9]
An accelerated sine mapping whale optimizer for feature selection.

iScience. 2023-9-14

[10]
Multilevel Threshold Segmentation of Skin Lesions in Color Images Using Coronavirus Optimization Algorithm.

Diagnostics (Basel). 2023-9-15

本文引用的文献

[1]
Optimized chest X-ray image semantic segmentation networks for COVID-19 early detection.

J Xray Sci Technol. 2022

[2]
Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network.

Sci Rep. 2022-2-3

[3]
Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images.

Comput Biol Med. 2022-3

[4]
SRIS: Saliency-Based Region Detection and Image Segmentation of COVID-19 Infected Cases.

IEEE Access. 2020-10-19

[5]
Performance optimization of salp swarm algorithm for multi-threshold image segmentation: Comprehensive study of breast cancer microscopy.

Comput Biol Med. 2021-12

[6]
COVID-19 infection localization and severity grading from chest X-ray images.

Comput Biol Med. 2021-12

[7]
Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation.

Comput Biol Med. 2021-11

[8]
Research on image classification method based on improved multi-scale relational network.

PeerJ Comput Sci. 2021-7-21

[9]
Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi's entropy for chronic obstructive pulmonary disease.

Comput Biol Med. 2021-7

[10]
A critic evaluation of methods for COVID-19 automatic detection from X-ray images.

Inf Fusion. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索