Suppr超能文献

内质网应激相关的十标志物风险分类器用于上皮性卵巢癌的生存评估:卵巢癌的潜在治疗靶点。

Endoplasmic Reticulum Stress-Related Ten-Biomarker Risk Classifier for Survival Evaluation in Epithelial Ovarian Cancer and : A Potential Therapeutic Target of Ovarian Cancer.

机构信息

Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.

Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.

出版信息

Int J Mol Sci. 2023 Sep 12;24(18):14010. doi: 10.3390/ijms241814010.

Abstract

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignant tumor. Endoplasmic reticulum (ER) stress plays an important role in the malignant behaviors of several tumors. In this study, we established a risk classifier based on 10 differentially expressed genes related to ER stress to evaluate the prognosis of patients and help to develop novel medical decision-making for EOC cases. A total of 378 EOC cases with transcriptome data from the TCGA-OV public dataset were included. Cox regression analysis was used to establish a risk classifier based on 10 ER stress-related genes (ERGs). Then, through a variety of statistical methods, including survival analysis and receiver operating characteristic (ROC) methods, the prediction ability of the proposed classifier was tested and verified. Similar results were confirmed in the GEO cohort. In the immunoassay, the different subgroups showed different penetration levels of immune cells. Finally, we conducted loss-of-function experiments to silence in the human EOC cell line. We created a 10-ERG risk classifier that displays a powerful capability of survival evaluation for EOC cases, and could be a potential therapeutic target of ovarian cancer cells.

摘要

上皮性卵巢癌 (EOC) 是最致命的妇科恶性肿瘤。内质网 (ER) 应激在几种肿瘤的恶性行为中起着重要作用。在这项研究中,我们建立了一个基于 10 个与 ER 应激相关的差异表达基因的风险分类器,以评估患者的预后,并有助于为 EOC 病例制定新的医疗决策。总共纳入了来自 TCGA-OV 公共数据集的 378 例 EOC 病例的转录组数据。通过 Cox 回归分析,我们基于 10 个与 ER 应激相关的基因 (ERGs) 建立了一个风险分类器。然后,通过各种统计方法,包括生存分析和接收器操作特征 (ROC) 方法,测试和验证了所提出的分类器的预测能力。在 GEO 队列中也得到了相似的结果。在免疫测定中,不同的亚组显示出不同水平的免疫细胞浸润。最后,我们进行了功能丧失实验,沉默了人卵巢癌细胞系中的 。我们创建了一个 10-ERG 风险分类器,对 EOC 病例的生存评估具有强大的能力, 可能是卵巢癌细胞的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b141/10530916/5d29999ac2cb/ijms-24-14010-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验