Suppr超能文献

低延迟协作预测性维护:嘈杂工业环境中的空中联邦学习

Low-Latency Collaborative Predictive Maintenance: Over-the-Air Federated Learning in Noisy Industrial Environments.

作者信息

Bemani Ali, Björsell Niclas

机构信息

Department of Electrical Engineering, Mathematics and Science, University of Gävle, 801 76 Gävle, Sweden.

出版信息

Sensors (Basel). 2023 Sep 12;23(18):7840. doi: 10.3390/s23187840.

Abstract

The emergence of Industry 4.0 has revolutionized the industrial sector, enabling the development of compact, precise, and interconnected assets. This transformation has not only generated vast amounts of data but also facilitated the migration of learning and optimization processes to edge devices. Consequently, modern industries can effectively leverage this paradigm through distributed learning to define product quality and implement predictive maintenance (PM) strategies. While computing speeds continue to advance rapidly, the latency in communication has emerged as a bottleneck for fast edge learning, particularly in time-sensitive applications such as PM. To address this issue, we explore Federated Learning (FL), a privacy-preserving framework. FL entails updating a global AI model on a parameter server (PS) through aggregation of locally trained models from edge devices. We propose an innovative approach: analog aggregation over-the-air of updates transmitted concurrently over wireless channels. This leverages the waveform-superposition property in multi-access channels, significantly reducing communication latency compared to conventional methods. However, it is vulnerable to performance degradation due to channel properties like noise and fading. In this study, we introduce a method to mitigate the impact of channel noise in FL over-the-air communication and computation (FLOACC). We integrate a novel tracking-based stochastic approximation scheme into a standard federated stochastic variance reduced gradient (FSVRG). This effectively averages out channel noise's influence, ensuring robust FLOACC performance without increasing transmission power gain. Numerical results confirm our approach's superior communication efficiency and scalability in various FL scenarios, especially when dealing with noisy channels. Simulation experiments also highlight significant enhancements in prediction accuracy and loss function reduction for analog aggregation in over-the-air FL scenarios.

摘要

工业4.0的出现彻底改变了工业领域,推动了紧凑、精确且相互连接的资产的发展。这种转变不仅产生了大量数据,还促进了学习和优化过程向边缘设备的迁移。因此,现代工业可以通过分布式学习有效地利用这一范式来定义产品质量并实施预测性维护(PM)策略。尽管计算速度持续快速提升,但通信延迟已成为快速边缘学习的瓶颈,尤其是在诸如PM等对时间敏感的应用中。为了解决这个问题,我们探索了联邦学习(FL),这是一种隐私保护框架。FL需要通过聚合来自边缘设备的本地训练模型在参数服务器(PS)上更新全局人工智能模型。我们提出了一种创新方法:通过无线信道同时传输的更新进行空中模拟聚合。这利用了多址信道中的波形叠加特性,与传统方法相比显著降低了通信延迟。然而,由于噪声和衰落等信道特性,它容易出现性能下降。在本研究中,我们介绍了一种减轻空中通信和计算中的联邦学习(FLOACC)中信道噪声影响的方法。我们将一种新颖的基于跟踪的随机近似方案集成到标准联邦随机方差减少梯度(FSVRG)中。这有效地平均了信道噪声的影响,确保了稳健的FLOACC性能,而无需增加传输功率增益。数值结果证实了我们的方法在各种FL场景中具有卓越的通信效率和可扩展性,特别是在处理有噪声的信道时。仿真实验还突出了空中FL场景中模拟聚合在预测准确性和损失函数降低方面的显著提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fa9/10535979/372adc11087d/sensors-23-07840-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验