Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, 610041, Sichuan Province, China.
School of Mathematics and Statistics, Lanzhou University, 222 South Tianshui Rd, Lanzhou, 730000, Gansu Province, China.
Graefes Arch Clin Exp Ophthalmol. 2024 Jan;262(1):203-210. doi: 10.1007/s00417-023-06256-1. Epub 2023 Sep 29.
To develop a machine learning model to evaluate the activity stage of extraocular muscles in thyroid-associated ophthalmopathy (TAO).
This study retrospectively analysed data from patients with TAO who underwent contrast-enhanced magnetic resonance imaging (MRI) from 2015 to 2022. Three independent machine learning models, namely, extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and deep neural networks (DNNs), were constructed using common clinical features. The performance of these models was compared using evaluation metrics such as the area under the receiver operating curve (AUC), accuracy, precision, recall, and F1 score. The importance of features was explained using Shapley additive explanations (SHAP).
A total of 2561 eyes of 1479 TAO patients were included in this study. The original dataset was randomly divided into a training set (80%, n = 2048) and a test set (20%, n = 513). In the performance evaluation of the test set, the LightGBM model had the best diagnostic performance (AUC 0.9260). According to the SHAP results, features such as conjunctival congestion, swollen caruncles, oedema of the upper eyelid, course of TAO, and intraocular pressure had the most significant impact on the LightGBM model.
This study used contrast-enhanced MRI as an objective evaluation criterion and constructed a LightGBM model based on readily accessible clinical data. The model had good classification performance, making it a promising artificial intelligence (AI)-assisted tool to help community hospitals evaluate the inflammatory activity of extraocular muscles in TAO patients in a timely manner.
开发一种机器学习模型,以评估甲状腺相关眼病(TAO)眼外肌的活动期。
本研究回顾性分析了 2015 年至 2022 年期间接受对比增强磁共振成像(MRI)的 TAO 患者的数据。使用常见的临床特征构建了三个独立的机器学习模型,分别是极端梯度提升(XGBoost)、轻梯度提升机(LightGBM)和深度神经网络(DNN)。使用接受者操作特征曲线下面积(AUC)、准确性、精度、召回率和 F1 分数等评估指标比较这些模型的性能。使用 Shapley 加法解释(SHAP)解释特征的重要性。
本研究共纳入 1479 例 TAO 患者的 2561 只眼。原始数据集随机分为训练集(80%,n=2048)和测试集(20%,n=513)。在测试集的性能评估中,LightGBM 模型具有最佳的诊断性能(AUC 0.9260)。根据 SHAP 结果,结膜充血、肿胀的穹隆、上眼睑水肿、TAO 病程和眼压等特征对 LightGBM 模型的影响最大。
本研究使用对比增强 MRI 作为客观评估标准,并基于易于获得的临床数据构建了 LightGBM 模型。该模型具有良好的分类性能,是一种有前途的人工智能(AI)辅助工具,可以帮助社区医院及时评估 TAO 患者眼外肌的炎症活动。