Suppr超能文献

水层和辐射损伤对 X 射线自由电子激光单颗粒成像中蛋白质取向恢复的影响。

Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser.

机构信息

European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.

Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland.

出版信息

Sci Rep. 2023 Sep 29;13(1):16359. doi: 10.1038/s41598-023-43298-1.

Abstract

The noise caused by sample heterogeneity (including sample solvent) has been identified as one of the determinant factors for a successful X-ray single-particle imaging experiment. It influences both the radiation damage process that occurs during illumination as well as the scattering patterns captured by the detector. Here, we investigate the impact of water layer thickness and radiation damage on orientation recovery from diffraction patterns of the nitrogenase iron protein. Orientation recovery is a critical step for single-particle imaging. It enables to sort a set of diffraction patterns scattered by identical particles placed at unknown orientations and assemble them into a 3D reciprocal space volume. The recovery quality is characterized by a "disconcurrence" metric. Our results show that while a water layer mitigates protein damage, the noise generated by the scattering from it can introduce challenges for orientation recovery and is anticipated to cause problems in the phase retrieval process to extract the desired protein structure. Compared to these disadvantageous effects due to the thick water layer, the effects of radiation damage on the orientation recovery are relatively small. Therefore, minimizing the amount of residual sample solvent should be considered a crucial step in improving the fidelity and resolution of X-ray single-particle imaging experiments.

摘要

由样品异质性(包括样品溶剂)引起的噪声已被确定为 X 射线单颗粒成像实验成功的决定因素之一。它会影响辐照过程中发生的辐射损伤以及探测器捕捉到的散射模式。在这里,我们研究了水层厚度和辐射损伤对从氮酶铁蛋白衍射图案中恢复取向的影响。取向恢复是单颗粒成像的关键步骤。它可以对放置在未知取向的相同粒子散射的一组衍射图案进行分类,并将它们组装成三维倒易空间体积。恢复质量的特征是通过“不协调性”度量来表示。我们的结果表明,虽然水层可以减轻蛋白质的损伤,但它散射产生的噪声可能会给取向恢复带来挑战,并预计会在相位恢复过程中出现问题,从而无法提取所需的蛋白质结构。与厚水层带来的这些不利影响相比,辐射损伤对取向恢复的影响相对较小。因此,减少残留样品溶剂的量应该被视为提高 X 射线单颗粒成像实验的保真度和分辨率的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc7/10541445/5a5d63fe67de/41598_2023_43298_Fig1_HTML.jpg

相似文献

3
The correlation of single-particle diffraction patterns as a continuous function of particle orientation.
Philos Trans R Soc Lond B Biol Sci. 2014 Jul 17;369(1647):20130329. doi: 10.1098/rstb.2013.0329.
4
Atomic structure of a single large biomolecule from diffraction patterns of random orientations.
J Struct Biol. 2012 Jul;179(1):41-5. doi: 10.1016/j.jsb.2012.04.014. Epub 2012 May 2.
5
Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers.
ACS Nano. 2018 Aug 28;12(8):7509-7518. doi: 10.1021/acsnano.8b01838. Epub 2018 Jul 20.
6
Radiation damage to biological macromolecules∗.
Curr Opin Struct Biol. 2023 Oct;82:102662. doi: 10.1016/j.sbi.2023.102662. Epub 2023 Aug 11.
7
Modeling of the damage dynamics of nanospheres exposed to x-ray free-electron-laser radiation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041902. doi: 10.1103/PhysRevE.77.041902. Epub 2008 Apr 1.
8
Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011921. doi: 10.1103/PhysRevE.84.011921. Epub 2011 Jul 25.

引用本文的文献

1
Impact of gas background on XFEL single-particle imaging.
Sci Rep. 2025 Aug 12;15(1):29559. doi: 10.1038/s41598-025-15092-8.
2
Computational study of diffraction image formation from XFEL irradiated single ribosome molecule.
Sci Rep. 2024 May 9;14(1):10617. doi: 10.1038/s41598-024-61314-w.

本文引用的文献

2
Comparison of EMC and CM methods for orienting diffraction images in single-particle imaging experiments.
IUCrJ. 2021 Oct 7;8(Pt 6):980-991. doi: 10.1107/S205225252100868X. eCollection 2021 Nov 1.
4
An encryption-decryption framework to validating single-particle imaging.
Sci Rep. 2021 Jan 13;11(1):971. doi: 10.1038/s41598-020-79589-0.
6
Structural Heterogeneity in Single Particle Imaging Using X-ray Lasers.
J Phys Chem Lett. 2020 Aug 6;11(15):6077-6083. doi: 10.1021/acs.jpclett.0c01144. Epub 2020 Jul 16.
7
Single-particle imaging by x-ray free-electron lasers-How many snapshots are needed?
Struct Dyn. 2020 Mar 20;7(2):024102. doi: 10.1063/1.5144516. eCollection 2020 Mar.
8
Low-signal limit of X-ray single particle diffractive imaging.
Opt Express. 2019 Dec 23;27(26):37816-37833. doi: 10.1364/OE.27.037816.
9
Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers?
Struct Dyn. 2019 Aug 20;6(4):044103. doi: 10.1063/1.5098309. eCollection 2019 Jul.
10
The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation.
J Synchrotron Radiat. 2019 May 1;26(Pt 3):660-676. doi: 10.1107/S1600577519003308. Epub 2019 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验