Suppr超能文献

PerfU-Net:基于 CT 灌注源数据估算急性缺血性脑卒中的梗死核心区

PerfU-Net: Baseline infarct estimation from CT perfusion source data for acute ischemic stroke.

机构信息

Amsterdam UMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam UMC, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; University of Amsterdam, Informatics Institute, Science Park 900, Amsterdam, 1098 XH, The Netherlands.

Amsterdam UMC, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.

出版信息

Med Image Anal. 2023 Apr;85:102749. doi: 10.1016/j.media.2023.102749. Epub 2023 Jan 14.

Abstract

CT perfusion imaging is commonly used for infarct core quantification in acute ischemic stroke patients. The outcomes and perfusion maps of CT perfusion software, however, show many discrepancies between vendors. We aim to perform infarct core segmentation directly from CT perfusion source data using machine learning, excluding the need to use the perfusion maps from standard CT perfusion software. To this end, we present a symmetry-aware spatio-temporal segmentation model that encodes the micro-perfusion dynamics in the brain, while decoding a static segmentation map for infarct core assessment. Our proposed spatio-temporal PerfU-Net employs an attention module on the skip-connections to match the dimensions of the encoder and decoder. We train and evaluate the method on 94 and 62 scans, respectively, using the Ischemic Stroke Lesion Segmentation (ISLES) 2018 challenge data. We achieve state-of-the-art results compared to methods that only use CT perfusion source imaging with a Dice score of 0.46. We are almost on par with methods that use perfusion maps from third party software, whilst it is known that there is a large variation in these perfusion maps from various vendors. Moreover, we achieve improved performance compared to simple perfusion map analysis, which is used in clinical practice.

摘要

CT 灌注成像是急性缺血性脑卒中患者梗死核心定量分析的常用方法。然而,CT 灌注软件的结果和灌注图在不同供应商之间存在许多差异。我们的目标是使用机器学习直接从 CT 灌注源数据进行梗死核心分割,而无需使用标准 CT 灌注软件的灌注图。为此,我们提出了一种对称感知的时空分割模型,该模型对大脑中的微灌注动态进行编码,同时为梗死核心评估解码一个静态分割图。我们提出的时空 PerfU-Net 在跳过连接上使用注意力模块来匹配编码器和解码器的维度。我们分别使用缺血性脑卒中病变分割(ISLES)2018 挑战赛的数据对 94 次和 62 次扫描进行了训练和评估。与仅使用 CT 灌注源成像的方法相比,我们的方法取得了最先进的结果,Dice 分数为 0.46。我们与使用第三方软件灌注图的方法几乎不相上下,而众所周知,不同供应商的这些灌注图存在很大差异。此外,与临床实践中使用的简单灌注图分析相比,我们的方法具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验