Jones Craig K, Li Bochong, Wu Jo-Hsuan, Nakaguchi Toshiya, Xuan Ping, Liu T Y Alvin
Wilmer Eye Institute, School of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
The Malone Center for Engineering in Healthcare, Johns Hopkins University, Malone Hall, Suite 340, 3400 North Charles Street, Baltimore, MD, 21218, USA.
Int J Retina Vitreous. 2023 Oct 2;9(1):60. doi: 10.1186/s40942-023-00497-2.
Optical coherence tomography (OCT) is the most important and commonly utilized imaging modality in ophthalmology and is especially crucial for the diagnosis and management of macular diseases. Each OCT volume is typically only available as a series of cross-sectional images (B-scans) that are accessible through proprietary software programs which accompany the OCT machines. To maximize the potential of OCT imaging for machine learning purposes, each OCT image should be analyzed en bloc as a 3D volume, which requires aligning all the cross-sectional images within a particular volume.
A dataset of OCT B-scans obtained from 48 age-related macular degeneration (AMD) patients and 50 normal controls was used to evaluate five registration algorithms. After alignment of B-scans from each patient, an en face surface map was created to measure the registration quality, based on an automatically generated Laplace difference of the surface map-the smoother the surface map, the smaller the average Laplace difference. To demonstrate the usefulness of B-scan alignment, we trained a 3D convolutional neural network (CNN) to detect age-related macular degeneration (AMD) on OCT images and compared the performance of the model with and without B-scan alignment.
The mean Laplace difference of the surface map before registration was 27 ± 4.2 pixels for the AMD group and 26.6 ± 4 pixels for the control group. After alignment, the smoothness of the surface map was improved, with a mean Laplace difference of 5.5 ± 2.7 pixels for Advanced Normalization Tools Symmetric image Normalization (ANTs-SyN) registration algorithm in the AMD group and a mean Laplace difference of 4.3 ± 1.4.2 pixels for ANTs in the control group. Our 3D CNN achieved superior performance in detecting AMD, when aligned OCT B-scans were used (AUC 0.95 aligned vs. 0.89 unaligned).
We introduced a novel metric to quantify OCT B-scan alignment and compared the effectiveness of five alignment algorithms. We confirmed that alignment could be improved in a statistically significant manner with readily available alignment algorithms that are available to the public, and the ANTs algorithm provided the most robust performance overall. We further demonstrated that alignment of OCT B-scans will likely be useful for training 3D CNN models.
光学相干断层扫描(OCT)是眼科领域最重要且最常用的成像方式,对黄斑疾病的诊断和治疗尤为关键。每个OCT容积通常仅以一系列横截面图像(B扫描)的形式提供,可通过随OCT机器附带的专有软件程序访问。为了将OCT成像在机器学习方面的潜力最大化,每个OCT图像应作为一个三维容积进行整体分析,这需要对齐特定容积内的所有横截面图像。
使用从48名年龄相关性黄斑变性(AMD)患者和50名正常对照者获取的OCT B扫描数据集来评估五种配准算法。在对每位患者的B扫描进行对齐后,基于自动生成的表面图拉普拉斯差值创建一个正面表面图来测量配准质量——表面图越平滑,平均拉普拉斯差值越小。为了证明B扫描对齐的有用性,我们训练了一个三维卷积神经网络(CNN)来在OCT图像上检测年龄相关性黄斑变性(AMD),并比较了有和没有B扫描对齐时模型的性能。
AMD组配准前表面图的平均拉普拉斯差值为27±4.2像素,对照组为26.6±4像素。对齐后,表面图的平滑度得到改善,AMD组中高级归一化工具对称图像归一化(ANTs - SyN)配准算法的平均拉普拉斯差值为5.5±2.7像素,对照组中ANTs算法的平均拉普拉斯差值为4.3±1.42像素。当使用对齐的OCT B扫描时,我们的三维CNN在检测AMD方面表现更优(对齐时AUC为0.95,未对齐时为0.89)。
我们引入了一种新的指标来量化OCT B扫描对齐,并比较了五种对齐算法的有效性。我们证实,使用公众可获取的现成对齐算法可在统计学上显著改善对齐效果,并且ANTs算法总体上提供了最稳健的性能。我们进一步证明,OCT B扫描的对齐可能对训练三维CNN模型有用。