Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, 43212, USA.
Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
Sci Rep. 2024 May 23;14(1):11758. doi: 10.1038/s41598-024-62411-6.
Glaucoma is a progressive neurodegenerative disease characterized by the gradual degeneration of retinal ganglion cells, leading to irreversible blindness worldwide. Therefore, timely and accurate diagnosis of glaucoma is crucial, enabling early intervention and facilitating effective disease management to mitigate further vision deterioration. The advent of optical coherence tomography (OCT) has marked a transformative era in ophthalmology, offering detailed visualization of the macula and optic nerve head (ONH) regions. In recent years, both 2D and 3D convolutional neural network (CNN) algorithms have been applied to OCT image analysis. While 2D CNNs rely on post-prediction aggregation of all B-scans within OCT volumes, 3D CNNs allow for direct glaucoma prediction from the OCT data. However, in the absence of extensively pre-trained 3D models, the comparative efficacy of 2D and 3D-CNN algorithms in detecting glaucoma from volumetric OCT images remains unclear. Therefore, this study explores the efficacy of glaucoma detection through volumetric OCT images using select state-of-the-art (SOTA) 2D-CNN models, 3D adaptations of these 2D-CNN models with specific weight transfer techniques, and a custom 5-layer 3D-CNN-Encoder algorithm. The performance across two distinct datasets is evaluated, each focusing on the macula and the ONH, to provide a comprehensive understanding of the models' capabilities in identifying glaucoma. Our findings demonstrate that the 2D-CNN algorithm consistently provided robust results compared to their 3D counterparts tested in this study for glaucoma detection, achieving AUC values of 0.960 and 0.943 for the macular and ONH OCT test images, respectively. Given the scarcity of pre-trained 3D models trained on extensive datasets, this comparative analysis underscores the overall utility of 2D and 3D-CNN algorithms in advancing glaucoma diagnostic systems in ophthalmology and highlights the potential of 2D algorithms for volumetric OCT image-based glaucoma detection.
青光眼是一种进行性神经退行性疾病,其特征是视网膜神经节细胞逐渐退化,导致全球范围内的不可逆转失明。因此,及时准确地诊断青光眼至关重要,可以实现早期干预,并有助于有效管理疾病,以减轻进一步的视力恶化。光学相干断层扫描(OCT)的出现标志着眼科领域的一个变革时代,它提供了对黄斑和视神经头(ONH)区域的详细可视化。近年来,二维和三维卷积神经网络(CNN)算法都已应用于 OCT 图像分析。二维 CNN 依赖于 OCT 体积内所有 B 扫描的后预测聚合,而三维 CNN 允许直接从 OCT 数据预测青光眼。然而,在缺乏广泛预训练的 3D 模型的情况下,2D 和 3D-CNN 算法在从体积 OCT 图像中检测青光眼的比较效果尚不清楚。因此,本研究通过选择最先进的(SOTA)二维 CNN 模型、这些二维 CNN 模型的三维自适应模型和自定义的 5 层 3D-CNN-Encoder 算法,探索使用体积 OCT 图像检测青光眼的效果。通过两个不同的数据集评估了性能,每个数据集都侧重于黄斑和 ONH,以全面了解模型在识别青光眼方面的能力。我们的研究结果表明,二维 CNN 算法与在本研究中测试的三维对应算法相比,始终提供稳健的结果,用于检测青光眼,黄斑和 ONH OCT 测试图像的 AUC 值分别为 0.960 和 0.943。鉴于缺乏在广泛数据集上进行预训练的 3D 模型,这种比较分析突出了二维和三维 CNN 算法在推进眼科青光眼诊断系统中的总体实用性,并强调了二维算法在基于体积 OCT 图像的青光眼检测中的潜力。