Suppr超能文献

使用多尺度卷积神经网络集成进行黄斑 OCT 分类。

Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble.

出版信息

IEEE Trans Med Imaging. 2018 Apr;37(4):1024-1034. doi: 10.1109/TMI.2017.2780115.

Abstract

Computer-aided diagnosis (CAD) of retinal pathologies is a current active area in medical image analysis. Due to the increasing use of retinal optical coherence tomography (OCT) imaging technique, a CAD system in retinal OCT is essential to assist ophthalmologist in the early detection of ocular diseases and treatment monitoring. This paper presents a novel CAD system based on a multi-scale convolutional mixture of expert (MCME) ensemble model to identify normal retina, and two common types of macular pathologies, namely, dry age-related macular degeneration, and diabetic macular edema. The proposed MCME modular model is a data-driven neural structure, which employs a new cost function for discriminative and fast learning of image features by applying convolutional neural networks on multiple-scale sub-images. MCME maximizes the likelihood function of the training data set and ground truth by considering a mixture model, which tries also to model the joint interaction between individual experts by using a correlated multivariate component for each expert module instead of only modeling the marginal distributions by independent Gaussian components. Two different macular OCT data sets from Heidelberg devices were considered for the evaluation of the method, i.e., a local data set of OCT images of 148 subjects and a public data set of 45 OCT acquisitions. For comparison purpose, we performed a wide range of classification measures to compare the results with the best configurations of the MCME method. With the MCME model of four scale-dependent experts, the precision rate of 98.86%, and the area under the receiver operating characteristic curve (AUC) of 0.9985 were obtained on average.

摘要

视网膜病变的计算机辅助诊断(CAD)是医学图像分析中的一个活跃领域。由于视网膜光学相干断层扫描(OCT)成像技术的广泛应用,视网膜 OCT 中的 CAD 系统对于协助眼科医生早期发现眼部疾病和监测治疗至关重要。本文提出了一种基于多尺度卷积混合专家(MCME)集成模型的新型 CAD 系统,用于识别正常视网膜和两种常见的黄斑病变,即干性年龄相关性黄斑变性和糖尿病性黄斑水肿。所提出的 MCME 模块化模型是一种数据驱动的神经结构,通过在多尺度子图像上应用卷积神经网络,采用新的代价函数来实现图像特征的判别和快速学习。MCME 通过考虑混合模型来最大化训练数据集和真实标签的似然函数,该模型还尝试通过为每个专家模块使用相关的多元分量来建模各个专家之间的联合交互,而不是仅通过独立的高斯分量来建模边缘分布。使用来自海德堡设备的两个不同的黄斑 OCT 数据集评估该方法,即 148 名受试者的 OCT 图像的局部数据集和 45 个 OCT 采集的公共数据集。为了进行比较,我们进行了广泛的分类度量,以将结果与 MCME 方法的最佳配置进行比较。使用 MCME 的四个尺度相关专家模型,平均获得了 98.86%的准确率和 0.9985 的接收器工作特征曲线(AUC)下面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验