Suppr超能文献

用于低剂量PET去噪的联邦迁移学习:基于模拟异构数据的初步研究

Federated Transfer Learning for Low-dose PET Denoising: A Pilot Study with Simulated Heterogeneous Data.

作者信息

Zhou Bo, Miao Tianshun, Mirian Niloufar, Chen Xiongchao, Xie Huidong, Feng Zhicheng, Guo Xueqi, Li Xiaoxiao, Zhou S Kevin, Duncan James S, Liu Chi

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06511, USA.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2023 Mar;7(3):284-295. doi: 10.1109/trpms.2022.3194408. Epub 2022 Jul 27.

Abstract

Positron emission tomography (PET) with a reduced injection dose, low-dose PET, is an efficient way to reduce radiation dose. However, low-dose PET reconstruction suffers from a low signal-to-noise ratio (SNR), affecting diagnosis and other PET-related applications. Recently, deep learning-based PET denoising methods have demonstrated superior performance in generating high-quality reconstruction. However, these methods require a large amount of representative data for training, which can be difficult to collect and share due to medical data privacy regulations. Moreover, low-dose PET data at different institutions may use different low-dose protocols, leading to non-identical data distribution. While previous federated learning (FL) algorithms enable multi-institution collaborative training without the need of aggregating local data, it is challenging for previous methods to address the large domain shift caused by different low-dose PET settings, and the application of FL to PET is still under-explored. In this work, we propose a federated transfer learning (FTL) framework for low-dose PET denoising using heterogeneous low-dose data. Our experimental results on simulated multi-institutional data demonstrate that our method can efficiently utilize heterogeneous low-dose data without compromising data privacy for achieving superior low-dose PET denoising performance for different institutions with different low-dose settings, as compared to previous FL methods.

摘要

正电子发射断层扫描(PET)采用降低注射剂量,即低剂量PET,是降低辐射剂量的一种有效方法。然而,低剂量PET重建存在信噪比(SNR)低的问题,影响诊断及其他PET相关应用。最近,基于深度学习的PET去噪方法在生成高质量重建方面展现出卓越性能。然而,这些方法需要大量有代表性的数据用于训练,由于医学数据隐私规定,这些数据可能难以收集和共享。此外,不同机构的低剂量PET数据可能采用不同的低剂量方案,导致数据分布不一致。虽然先前的联邦学习(FL)算法能够实现多机构协作训练而无需聚合本地数据,但先前的方法难以解决不同低剂量PET设置导致的大域偏移问题,并且FL在PET中的应用仍未得到充分探索。在这项工作中,我们提出了一种使用异构低剂量数据进行低剂量PET去噪的联邦迁移学习(FTL)框架。我们在模拟的多机构数据上的实验结果表明,与先前的FL方法相比,我们的方法能够有效利用异构低剂量数据,同时不损害数据隐私,从而为不同低剂量设置的不同机构实现卓越的低剂量PET去噪性能。

相似文献

10
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

引用本文的文献

6
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.用于不同计数水平低计数PET去噪的统一噪声感知网络
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.
8
Deep learning-based PET image denoising and reconstruction: a review.基于深度学习的 PET 图像去噪与重建:综述
Radiol Phys Technol. 2024 Mar;17(1):24-46. doi: 10.1007/s12194-024-00780-3. Epub 2024 Feb 6.
10
PET image denoising based on denoising diffusion probabilistic model.基于去噪扩散概率模型的 PET 图像去噪。
Eur J Nucl Med Mol Imaging. 2024 Jan;51(2):358-368. doi: 10.1007/s00259-023-06417-8. Epub 2023 Oct 3.

本文引用的文献

1
Privacy and Robustness in Federated Learning: Attacks and Defenses.联邦学习中的隐私与鲁棒性:攻击与防御
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):8726-8746. doi: 10.1109/TNNLS.2022.3216981. Epub 2024 Jul 8.
2
Specificity-Preserving Federated Learning for MR Image Reconstruction.基于特异性保持的磁共振图像重建的联邦学习。
IEEE Trans Med Imaging. 2023 Jul;42(7):2010-2021. doi: 10.1109/TMI.2022.3202106. Epub 2023 Jun 30.
9
Over-and-Under Complete Convolutional RNN for MRI Reconstruction.用于MRI重建的上下完全卷积循环神经网络
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12906:13-23. doi: 10.1007/978-3-030-87231-1_2. Epub 2021 Sep 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验