Zhou Bo, Miao Tianshun, Mirian Niloufar, Chen Xiongchao, Xie Huidong, Feng Zhicheng, Guo Xueqi, Li Xiaoxiao, Zhou S Kevin, Duncan James S, Liu Chi
Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06511, USA.
IEEE Trans Radiat Plasma Med Sci. 2023 Mar;7(3):284-295. doi: 10.1109/trpms.2022.3194408. Epub 2022 Jul 27.
Positron emission tomography (PET) with a reduced injection dose, low-dose PET, is an efficient way to reduce radiation dose. However, low-dose PET reconstruction suffers from a low signal-to-noise ratio (SNR), affecting diagnosis and other PET-related applications. Recently, deep learning-based PET denoising methods have demonstrated superior performance in generating high-quality reconstruction. However, these methods require a large amount of representative data for training, which can be difficult to collect and share due to medical data privacy regulations. Moreover, low-dose PET data at different institutions may use different low-dose protocols, leading to non-identical data distribution. While previous federated learning (FL) algorithms enable multi-institution collaborative training without the need of aggregating local data, it is challenging for previous methods to address the large domain shift caused by different low-dose PET settings, and the application of FL to PET is still under-explored. In this work, we propose a federated transfer learning (FTL) framework for low-dose PET denoising using heterogeneous low-dose data. Our experimental results on simulated multi-institutional data demonstrate that our method can efficiently utilize heterogeneous low-dose data without compromising data privacy for achieving superior low-dose PET denoising performance for different institutions with different low-dose settings, as compared to previous FL methods.
正电子发射断层扫描(PET)采用降低注射剂量,即低剂量PET,是降低辐射剂量的一种有效方法。然而,低剂量PET重建存在信噪比(SNR)低的问题,影响诊断及其他PET相关应用。最近,基于深度学习的PET去噪方法在生成高质量重建方面展现出卓越性能。然而,这些方法需要大量有代表性的数据用于训练,由于医学数据隐私规定,这些数据可能难以收集和共享。此外,不同机构的低剂量PET数据可能采用不同的低剂量方案,导致数据分布不一致。虽然先前的联邦学习(FL)算法能够实现多机构协作训练而无需聚合本地数据,但先前的方法难以解决不同低剂量PET设置导致的大域偏移问题,并且FL在PET中的应用仍未得到充分探索。在这项工作中,我们提出了一种使用异构低剂量数据进行低剂量PET去噪的联邦迁移学习(FTL)框架。我们在模拟的多机构数据上的实验结果表明,与先前的FL方法相比,我们的方法能够有效利用异构低剂量数据,同时不损害数据隐私,从而为不同低剂量设置的不同机构实现卓越的低剂量PET去噪性能。