Suppr超能文献

一种用于缓解骨关节炎疼痛的任务无关型髋关节外骨骼:日常生活活动中的能量控制

A Task-Agnostic Hip Exoskeleton for Osteoarthritis Pain Relief: Energetic Control Across Activities of Daily Life.

作者信息

Zhang Jiefu, Divekar Nikhil V, Hinojosa Ernesto Hernandez, Gregg Robert D

出版信息

IEEE Int Conf Rehabil Robot. 2025 May;2025:1299-1306. doi: 10.1109/ICORR66766.2025.11063157.

Abstract

Hip osteoarthritis (OA) affects millions worldwide, yet effective conservative (non-surgical) treatments are still limited. Conventional hip braces cannot reduce painful joint loads associated with contractile forces from flexors and extensors during locomotion. Powered hip exoskeletons could potentially reduce biological hip moments by applying flexion/extension torques, thus attenuating muscle forces that contribute to OA pain. Here, we present a novel task-agnostic controller for a backdrivable hip exoskeleton that relieves hip O A pain across the primary activities of daily life. Inspired by the energy shaping method, this controller utilizes biomechanicsbased components to assist with level walking, ramp and stairs ascent/descent, and sit-to-stand transitions, which can be customized to different populations, like hip OA. In a pilot study with three hip OA participants, the hip exoskeleton holistically reduced pain and perceived difficulty during a multi-activity test (except difficulty of level walking). The exoskeleton also increased hip range of motion during walking, with subject-specific improvements in walking speed. This pilot study suggests that hip exoskeletons may offer a promising new intervention for managing hip O A.

摘要

髋骨关节炎(OA)在全球影响着数百万人,但有效的保守(非手术)治疗仍然有限。传统的髋部支具无法减少与运动过程中屈肌和伸肌收缩力相关的疼痛关节负荷。动力髋外骨骼有可能通过施加屈伸扭矩来减少生物髋关节力矩,从而减轻导致OA疼痛的肌肉力量。在此,我们提出了一种用于可反向驱动髋外骨骼的新型任务无关控制器,该控制器可在日常生活的主要活动中缓解髋OA疼痛。受能量塑形方法的启发,该控制器利用基于生物力学的组件来辅助水平行走、坡道和楼梯的上升/下降以及从坐起到站立的转换,可针对不同人群(如髋OA患者)进行定制。在一项针对三名髋OA参与者的试点研究中,髋外骨骼在多活动测试期间全面减轻了疼痛并降低了感知难度(水平行走难度除外)。外骨骼还增加了行走过程中髋关节的活动范围,并根据个体情况提高了行走速度。这项试点研究表明,髋外骨骼可能为管理髋OA提供一种有前景的新干预措施。

相似文献

1
A Task-Agnostic Hip Exoskeleton for Osteoarthritis Pain Relief: Energetic Control Across Activities of Daily Life.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1299-1306. doi: 10.1109/ICORR66766.2025.11063157.
2
A Task-Agnostic Knee Exoskeleton for Reducing Osteoarthritis Pain Across Activities of Daily Life: A Pilot Study.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1437-1443. doi: 10.1109/ICORR66766.2025.11063102.
3
Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
Gait Posture. 2022 Oct;98:343-354. doi: 10.1016/j.gaitpost.2022.09.082. Epub 2022 Sep 26.
4
Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: a mixed methods review.
Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD010842. doi: 10.1002/14651858.CD010842.pub2.
5
Assessment of hip joint mechanics during walking in people with Marfan syndrome.
Gait Posture. 2025 Sep;121:78-84. doi: 10.1016/j.gaitpost.2025.04.036. Epub 2025 May 1.
6
Evaluation of factors that affect hip moment impulse during gait: A systematic review.
Gait Posture. 2018 Mar;61:488-492. doi: 10.1016/j.gaitpost.2018.02.017. Epub 2018 Feb 19.
7
Associations Between Skeletal Alignment and Biomechanical Symmetry Before and After Transfemoral Bone-anchored Limb Implantation.
Clin Orthop Relat Res. 2025 May 1;483(5):902-914. doi: 10.1097/CORR.0000000000003344. Epub 2024 Dec 24.
9
Hyaluronic acid and other conservative treatment options for osteoarthritis of the ankle.
Cochrane Database Syst Rev. 2015 Oct 17;2015(10):CD010643. doi: 10.1002/14651858.CD010643.pub2.
10
Do 3-dimensional Spinopelvic Characteristics Normalize After THA? A Prospective, Comparative Study Using Motion Capture Analysis.
Clin Orthop Relat Res. 2024 Sep 1;482(9):1642-1655. doi: 10.1097/CORR.0000000000003106. Epub 2024 May 14.

本文引用的文献

1
A Modular Framework for Task-Agnostic, Energy Shaping Control of Lower Limb Exoskeletons.
IEEE Trans Control Syst Technol. 2024 Nov;32(6):2359-2375. doi: 10.1109/tcst.2024.3429908. Epub 2024 Jul 30.
2
A versatile knee exoskeleton mitigates quadriceps fatigue in lifting, lowering, and carrying tasks.
Sci Robot. 2024 Sep 18;9(94):eadr8282. doi: 10.1126/scirobotics.adr8282.
3
Estimating human joint moments unifies exoskeleton control, reducing user effort.
Sci Robot. 2024 Mar 20;9(88):eadi8852. doi: 10.1126/scirobotics.adi8852.
4
Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults.
J Neuroeng Rehabil. 2024 Jan 2;21(1):1. doi: 10.1186/s12984-023-01287-5.
5
An Energetic Approach to Task-Invariant Ankle Exoskeleton Control.
Rep U S. 2023 Oct;2023:6082-6089. doi: 10.1109/iros55552.2023.10342136. Epub 2023 Dec 13.
6
Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.
Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.
7
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
9
Real-Time Gait Phase Estimation for Robotic Hip Exoskeleton Control During Multimodal Locomotion.
IEEE Robot Autom Lett. 2021 Apr;6(2):3491-3497. doi: 10.1109/lra.2021.3062562. Epub 2021 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验