Suppr超能文献

人类颅骨性别二态性信号的映射。

Mapping sexual dimorphism signal in the human cranium.

机构信息

Department of History and History of Arts, University Rovira i Virgli, Avinguda de Catalunya 35, 43002, Tarragona, Spain.

Catalan Institute of Human Paleoecology and Social Evolution (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.

出版信息

Sci Rep. 2023 Oct 6;13(1):16847. doi: 10.1038/s41598-023-43007-y.

Abstract

The study of sexual dimorphism in human crania has important applications in the fields of human evolution and human osteology. Current, the identification of sex from cranial morphology relies on manual visual inspection of identifiable anatomical features, which can lead to bias due to user's expertise. We developed a landmark-based approach to automatically map the sexual dimorphism signal on the human cranium. We used a sex-known sample of 228 individuals from different geographical locations to identify which cranial regions are most sexually dimorphic taking into account shape, form and size. Our results, which align with standard protocols, show that glabellar and supraciliary regions, the mastoid process and the nasal region are the most sexually dimorphic traits (with an accuracy of 73%). The accuracy increased to 77% if they were considered together. Surprisingly the occipital external protuberance resulted to be not sexually dimorphic but mainly related to variations in size. Our approach here applied could be expanded to map other variable signals on skeletal morphology.

摘要

人类颅骨的性别二态性研究在人类进化和人类骨骼学领域有重要应用。目前,通过颅骨形态来识别性别依赖于对可识别的解剖特征的人工视觉检查,这可能会由于使用者的专业知识而产生偏差。我们开发了一种基于标志点的方法,以自动将性二态性信号映射到人类颅骨上。我们使用了来自不同地理位置的 228 名已知性别的样本,以确定哪些颅骨区域在考虑形状、形式和大小的情况下最具性别二态性。我们的结果与标准协议一致,表明眉间和眉上区域、乳突和鼻部区域是最具性别二态性的特征(准确率为 73%)。如果将它们一起考虑,准确率增加到 77%。令人惊讶的是,枕外隆凸结果没有性别二态性,但主要与大小变化有关。我们在这里应用的方法可以扩展到骨骼形态上的其他可变信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f3c/10558540/a7159153ad1f/41598_2023_43007_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验