Mittelstrass Jana, Heinzelmann Renate, Eschen René, Hartmann Martin, Kupper Quirin, Schneider Salome, Prospero Simone, Franić Iva
Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL, Birmensdorf, Switzerland.
CABI, Delémont, Switzerland.
Environ Microbiome. 2025 May 19;20(1):53. doi: 10.1186/s40793-025-00712-7.
Culturing of fungi is labor-intensive and reveals limited diversity, while high-throughput sequencing of barcodes (i.e., metabarcoding) enables a simultaneous detection of fungi from multiple environmental samples. Metabarcoding using short-read sequencers, such as Illumina platforms, provides high sequencing depths but results in many unidentified taxa. Long-read sequencing can improve species and genus assignments but might encompass lower sequencing depth and limit diversity coverage. In this study, fungi in seeds of eleven angiosperm and gymnosperm tree species were assessed using traditional culturing, Illumina short-read metabarcoding, and Oxford Nanopore Technologies long-read metabarcoding. We focused on seed-borne fungi as understanding their diversity and potential impacts on seedlings is crucial for securing plant health. We compared (1) the number and identity of fungal genera and species between metabarcoding approaches and traditional culturing and (2) fungal alpha- and beta-diversity between metabarcoding methods, considering different hosts and fungal lifestyles.
In both short- and long-read metabarcoding datasets, similar numbers of fungal reads and operational taxonomic units were assigned to comparable numbers of fungal genera and species. About one-third of the identified genera were plant pathogens, followed by saprotrophs and endophytes. Culturing overall revealed fewer fungal genera, while most of the fungal reads in short-read metabarcoding datasets stemmed from cultured taxa. Long-read metabarcoding revealed lower per-sample diversity than short-read metabarcoding and distinct fungal communities compared to those from the short-read datasets. Host-dependent patterns in alpha- and beta-diversity were observed across methods, with angiosperms harboring more fungal taxa than gymnosperms, and distinct community structuring across host tree groups and species, although the differences were stronger in short-read than long-read metabarcoding datasets.
Illumina and Oxford Nanopore Technologies metabarcoding captured similar host-dependent diversity patterns despite observed differences in numbers and composition of fungi. Short-read metabarcoding might be optimal for fungal biodiversity studies due to higher sequencing depths and resultant breadth of diversity. As error rates are continuing to decrease, reference databases expand, and throughput improves, long-read metabarcoding is becoming a strong candidate for future diagnostic studies of fungi. Traditional culturing captures most of the fungi from short-read metabarcoding and remains valuable for obtaining isolates for further research.
真菌培养工作强度大且揭示的多样性有限,而条形码高通量测序(即宏条形码测序)能够同时检测多个环境样本中的真菌。使用短读长测序仪(如Illumina平台)进行宏条形码测序可提供高测序深度,但会产生许多未鉴定的分类单元。长读长测序可改善物种和属的分类,但可能测序深度较低且限制多样性覆盖范围。在本研究中,使用传统培养法、Illumina短读长宏条形码测序和牛津纳米孔技术长读长宏条形码测序对11种被子植物和裸子植物种子中的真菌进行了评估。我们关注种子携带的真菌,因为了解它们的多样性及其对幼苗的潜在影响对于确保植物健康至关重要。我们比较了(1)宏条形码测序方法与传统培养法之间真菌属和种的数量及种类,以及(2)考虑不同宿主和真菌生活方式的宏条形码测序方法之间的真菌α多样性和β多样性。
在短读长和长读长宏条形码测序数据集中,分配给相当数量真菌属和种的真菌读数和可操作分类单元数量相似。约三分之一的已鉴定属为植物病原体,其次是腐生菌和内生菌。总体而言,培养法揭示的真菌属较少,而短读长宏条形码测序数据集中的大多数真菌读数来自已培养的分类单元。长读长宏条形码测序显示每个样本的多样性低于短读长宏条形码测序,且与短读长数据集相比真菌群落不同。在所有方法中均观察到α多样性和β多样性的宿主依赖模式,被子植物中的真菌分类单元比裸子植物更多,并且不同宿主树种组和物种之间有明显的群落结构,尽管在短读长宏条形码测序数据集中差异比长读长宏条形码测序数据集中更强。
尽管观察到真菌数量和组成存在差异,但Illumina和牛津纳米孔技术宏条形码测序捕捉到了相似的宿主依赖多样性模式。由于更高的测序深度和由此产生的多样性广度,短读长宏条形码测序可能是真菌生物多样性研究的最佳选择。随着错误率持续降低、参考数据库扩展以及通量提高,长读长宏条形码测序正成为未来真菌诊断研究的有力候选方法。传统培养法从短读长宏条形码测序中捕获了大多数真菌,并且对于获取分离物以进行进一步研究仍然很有价值。