Suppr超能文献

一种基于ETC大数据的超视距潜在安全威胁车辆识别方法

An over-the-horizon potential safety threat vehicle identification method based on ETC big data.

作者信息

Luo Guanghao, Zou Fumin, Guo Feng, Liu Jishun, Cai Xinjian, Cai Qiqin, Xia Chenxi

机构信息

Fujian Key Laboratory of Automotive Electronics and Electric Drive, Fujian University of Technology, FuZhou, 350108, China.

Renewable Energy Technology Research Institute of Fujian University of Technology, Ningde, 352101, China.

出版信息

Heliyon. 2023 Sep 11;9(9):e20050. doi: 10.1016/j.heliyon.2023.e20050. eCollection 2023 Sep.

Abstract

Smart cars rely on sensors like LIDAR and high-precision map-based perception for driving environment sensing. However, they can't detect low-speed vehicles beyond visual range, affecting safety and comfort. Manual vehicles face similar challenges. Low-speed driving contributes to expressway accidents due to limited visibility, road design, and equipment performance. To enhance safety, an over-the-horizon potential safety threat vehicle identification method using ETC big data is proposed. It consists of three layers. The first layer is the vehicle section travel speed sensing layer based on the wlp-XGBoost algorithm. The second layer is the in-transit vehicle position estimation layer based on the DR-HMM algorithm. The third layer is the Multi-information fusion of potential safety threat vehicle identification layer. Dynamic real-time detection and identification of potential safety threats in expressway sections were achieved, and simulations were conducted using real-time ETC data from Quanxia section on an ETC platform. Results show accurate prediction of vehicle speed and position in different road sections and traffic situations, with over 95% accuracy and recall in identifying potential safety threat vehicles. It perceives changes in the traffic conditions of road sections in real-time based on the changing trend of potential safety threat vehicle numbers, providing a vital reference for speed planning and risk avoidance.

摘要

智能汽车依靠激光雷达等传感器和基于高精度地图的感知来进行驾驶环境感知。然而,它们无法检测到视距以外的低速车辆,这影响了安全性和舒适性。手动驾驶车辆也面临类似挑战。由于能见度有限、道路设计和设备性能等原因,低速行驶导致高速公路事故频发。为提高安全性,提出了一种利用ETC大数据的超视距潜在安全威胁车辆识别方法。该方法由三层组成。第一层是基于wlp-XGBoost算法的车辆路段行驶速度感知层。第二层是基于DR-HMM算法的在途车辆位置估计层。第三层是潜在安全威胁车辆识别层的多信息融合。实现了高速公路路段潜在安全威胁的动态实时检测与识别,并在ETC平台上利用泉厦路段的实时ETC数据进行了仿真。结果表明,该方法能够准确预测不同路段和交通情况下车辆的速度和位置,识别潜在安全威胁车辆的准确率和召回率均超过95%。它根据潜在安全威胁车辆数量的变化趋势实时感知路段交通状况的变化,为速度规划和风险规避提供了重要参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32f0/10559829/d55db4f77f9c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验